
FIWARE-Stream-Oriented-GE
Release

January 14, 2016

Contents

1 Introduction 1
1.1 Background and Detail . 1

2 Programmer Guide 3
2.1 Basic Setup . 3
2.2 Programming with the Stream Oriented GE in Java . 3
2.3 Programming with the Stream Oriented GE in JavaScript . 5
2.4 Magic-Mirror Example . 7
2.5 More Examples . 9

3 FIWARE Stream Oriented Generic Enabler - Installation and Administration Guide 11
3.1 Introduction . 11
3.2 Installation . 12
3.3 Configuration . 12
3.4 Sanity check Procedures . 14
3.5 Diagnosis Procedures . 15

4 FIWARE Stream Oriented Generic Enabler - Architecture Description 17
4.1 Copyright . 17
4.2 Legal Notice . 17
4.3 Overview . 17
4.4 Main Concepts . 18
4.5 Generic Architecture . 20
4.6 Creating applications on top of the Stream Oriented GE Architecture 21
4.7 Main Interactions . 22

5 FIWARE Stream Oriented Generic Enabler - Open API Specification 29
5.1 Create . 29
5.2 Invoke . 31
5.3 Release . 32
5.4 Subscribe . 33
5.5 Unsubscribe . 35
5.6 OnEvent . 36

i

ii

CHAPTER 1

Introduction

The Stream Oriented GE Kurento is a multimedia platform aimed to help developers to add multimedia capabilities to
their applications. The core element is the Kurento Media Server (KMS), a Gstreamer based multimedia engine that
provides the following features:

• Networked streaming protocols, including HTTP, RTP and WebRTC.

• Media transcodification between any of the codecs currently supported by Gstreamer.

• Generic support for computational vision and augmented reality filters.

• Media storage supporting writing operations for WebM and MP4 and reading operations for any of Gstreamer’s
muxers.

Kurento Java and JavaScript clients are available for developers. These clients are libraries to connect to KMS and
this way incorporate the above features in applications.

1.1 Background and Detail

This User and Programmers Guide relates to the Stream Oriented GE which is part of the Data/Context Management
chapter. Please find more information about this Generic Enabler in the following Open Specification.

1

http://gstreamer.freedesktop.org/

FIWARE-Stream-Oriented-GE, Release

2 Chapter 1. Introduction

CHAPTER 2

Programmer Guide

The Stream Oriented GE Kurento software is released under LGPL version 2.1 license. This is quite a convenient
license for programmers, but it is still recommended you check if it actually fits your application needs.

2.1 Basic Setup

First of all, developers must install Kurento Media Server. Please review the installation guide. In short, KMS can be
installed in an Ubuntu 14.04 machine as follows:

echo "deb http://ubuntu.kurento.org trusty kms6" | sudo tee /etc/apt/sources.list.d/kurento.list
wget -O - http://ubuntu.kurento.org/kurento.gpg.key | sudo apt-key add -
sudo apt-get update
sudo apt-get install kurento-media-server-6.0

Once a Kurento Media Server is installed, you need a Kurento Client to create your own applications with advanced
media capabilities. A Kurento Client is a programming library used to control the Kurento Media Server from an
application. Communication between a Kurento Client and the Kurento Media Server is implemented by the Stream
Oriented GE Open API. This communication beetween Kurento Clients and Kurento Media Server is done by means
of a WebSocket.

There are available Kurento Client libraries in Java and JavaScript. These libraries are based on the concept of Media
Element. A Media Element holds a specific media capability. For example, the media element called WebRtcEndpoint
holds the capability of sending and receiving WebRTC media streams, the media element called RecorderEndpoint
has the capability of recording into the file system any media streams it receives, the FaceOverlayFilter detects faces
on the exchanged video streams and adds a specific overlaid image on top of them, etc. Kurento exposes a rich toolbox
of media elements as part of its APIs.

The following sections provides information for create web applications with the Stream Oriented GE using Java and
JavaScript.

2.2 Programming with the Stream Oriented GE in Java

The Kurento Java Client is provided as Maven dependency in Maven Central repository. To use it in a Maven applica-
tion you have to include the following dependencies in your pom.xml:

<dependencies>
<dependency>

<groupId>org.kurento</groupId>
<artifactId>kurento-client</artifactId>

3

http://www.gnu.org/licenses/lgpl-2.1.html
http://maven.apache.org/
http://search.maven.org/#search%7Cga%7C1%7Ckurento-client

FIWARE-Stream-Oriented-GE, Release

<version>6.1.0</version>
</dependency>

</dependencies>

KurentoClient is the Java class used to connect to Kurento Media Server. This class has several static factory methods
to create instances from it. In the following code snippet you can see how to create a KurentoClient instance:

KurentoClient kurento = KurentoClient.create("ws://localhost:8888/kurento");

A MediaPipeline object is required to build media services. The method createMediaPipeline() of a KurentoClient
object can be used for this purpose:

MediaPipeline pipeline = kurento.createMediaPipeline();

Media elements within a pipeline can be connected to build services, but they are isolated from the rest of the system.
Media elements are created using the builder pattern allowing a flexible initialization. Mandatory parameters must be
provided in the builder constructor. Optional parameters are set to defaults unless the application overrides their values
using setter methods in the builder object. When the builder is configured, the object can be created using its build()
method. In the following snippet, several media elements are created:

// Protocols and codecs
WebRtcEndpoint webRtcEndpoint = new WebRtcEndpoint.Builder(pipeline).build();

HttpPostEndpoint httpPostEndpoint = new HttpPostEndpoint.Builder(pipeline).build();

RtpEndpoint rtpEndpoint = new RtpEndpoint.Builder(pipeline).build();

// Media repository
PlayerEndpoint playerEndpoint = new PlayerEndpoint.Builder(pipeline, "http://files.kurento.org/video/filter/fiwarecut.mp4").build();

RecorderEndpoint recorderEndpoint = new RecorderEndpoint.Builder(pipeline, "file:///tmp/recording.webm").build();

// Filters
FaceOverlayFilter faceOverlayFilter = new FaceOverlayFilter.Builder(pipeline).build();

ZBarFilter zBarFilter = new ZBarFilter.Builder(pipeline).build();

GStreamerFilter gstreamerFilter = new GStreamerFilter.Builder(pipeline, "videoflip method=4").build();

// Group communications
Composite composite = new Composite.Builder(pipeline).build();

Dispatcher dispatcher = new Dispatcher.Builder(pipeline).build();

DispatcherOneToMany dispatcherOneToMany = new DispatcherOneToMany.Builder(pipeline).build();

From the application developer perspective, Media Elements are like Lego pieces: you just need to take the elements
needed for an application and connect them following the desired topology. Hence, when creating a pipeline, develop-
ers need to determine the capabilities they want to use (the media elements) and the topology determining which media
elements provide media to which other media elements (the connectivity). The connectivity is controlled through the
connect primitive, exposed on all Kurento Client APIs. This primitive is always invoked in the element acting as
source and takes as argument the sink element following this scheme:

4 Chapter 2. Programmer Guide

FIWARE-Stream-Oriented-GE, Release

sourceMediaElement.connect(sinkMediaElement);

2.3 Programming with the Stream Oriented GE in JavaScript

The Kurento JavaScript Client is provided as Bower dependency in Bower repository. To use it in a Bower application
you have to include the following dependencies in your bower.json:

"dependencies": {
"kurento-client": "6.1.0",

}

First, you need to create an instance of the KurentoClient class that will manage the connection with the Kurento
Media Server, so you need to provide the URI of its WebSocket:

kurentoClient(ws_uri, function(error, kurentoClient) {
if (error) {

// Error connecting to KMS
}

// Success connecting to KMS

});

The second step is to create a pipeline using the previously created kurentoClient, as follows:

kurentoClient.create('MediaPipeline', function(error, pipeline) {
if (error) {

// Error creating MediaPipeline
}

// Success creating MediaPipeline
});

Then we should create the media elements. The following snippet shows how to create several media elements:

// Protocols and codecs
pipeline.create('WebRtcEndpoint', function(error, webRtcEndpoint) {

if (error) {
// Error creating WebRtcEndpoint

}

// Success creating WebRtcEndpoint
});

pipeline.create('HttpPostEndpoint', function(error, httpPostEndpoint) {
if (error) {

// Error creating HttpPostEndpoint
}

// Success creating HttpPostEndpoint
});

pipeline.create('RtpEndpoint', function(error, rtpEndpoint) {
if (error) {

// Error creating RtpEndpoint
}

2.3. Programming with the Stream Oriented GE in JavaScript 5

http://bower.io/
http://bower.io/search/?q=kurento-client

FIWARE-Stream-Oriented-GE, Release

// Success creating RtpEndpoint
});

// Media repository
pipeline.create('PlayerEndpoint', {uri : 'http://files.kurento.org/video/filter/fiwarecut.mp4'}, function(error, playerEndpoint) {

if (error) {
// Error creating PlayerEndpoint

}

// Success creating PlayerEndpoint
});

pipeline.create('RecorderEndpoint', {uri : 'file:///tmp/recording.webm'}, function(error, recorderEndpoint) {
if (error) {

// Error creating RecorderEndpoint
}

// Success creating RecorderEndpoint
});

// Filters
pipeline.create('FaceOverlayFilter', function(error, faceOverlayFilter) {

if (error) {
// Error creating FaceOverlayFilter

}

// Success creating FaceOverlayFilter
});

pipeline.create('ZBarFilter', function(error, zBarFilter) {
if (error) {

// Error creating ZBarFilter
}

// Success creating WebRtcEndpoint
});

pipeline.create('GStreamerFilter', {command : 'videoflip method=4'}, function(error, recorderEndpoint) {
if (error) {

// Error creating GStreamerFilter
}

// Success creating GStreamerFilter
});

// Group communications
pipeline.create('Composite', function(error, composite) {

if (error) {
// Error creating Composite

}

// Success creating Composite
});

pipeline.create('Dispatcher', function(error, dispatcher) {
if (error) {

// Error creating Dispatcher
}

6 Chapter 2. Programmer Guide

FIWARE-Stream-Oriented-GE, Release

// Success creating Dispatcher
});

pipeline.create('DispatcherOneToMany', function(error, dispatcherOneToMany) {
if (error) {

// Error creating DispatcherOneToMany
}

// Success creating DispatcherOneToMany
});

Finally, media elements can be connected. The method connect() of the Media Elements is always invoked in the
element acting as source and takes as argument the as sink element. For example a WebRtcEndpoint connected to
itself (loopback):

webRtc.connect(webRtc, function(error) {
if (error) {

// Error connecting media elements
}

// Success connecting media elements
});

2.4 Magic-Mirror Example

The Magic-Mirror web application is a good example to introduce the principles of programming with Kurento. This
application uses computer vision and augmented reality techniques to add a funny hat on top of faces.The following
picture shows a screenshot of the demo running in a web browser:

The interface of the application (an HTML web page) is composed by two HTML5 video tags: one showing the local
stream (as captured by the device webcam) and the other showing the remote stream sent by the media server back to
the client.

The logic of the application is quite simple: the local stream is sent to the Kurento Media Server, which returns it
back to the client with a filter processing. This filtering consists in faces detection and overlaying of an image on the
top of them. To implement this behavior we need to create a Media Pipeline composed by two Media Elements: a
WebRtcEndpoint connected to an FaceOverlayFilter. This filter element is connected again to the WebRtcEndpoint‘s
sink and then the stream is send back (to browser). This media pipeline is illustrated in the following picture:

This demo has been implemented in Java, Javascript, and also Node.js. Java implementation uses the Kurento Java
Client, while JavScript and Node.js uses the Kurento JavaScript Client. In addition, these three demos use Kurento
JavaScript Utils library in the client-side. This is an utility JavaScript library aimed to simplify the development of
WebRTC applications. In these demos, the function WebRtcPeer.startSendRecv is used to abstract the WebRTC internal
details (i.e. PeerConnection and getUserStream) and makes possible to start a full-duplex WebRTC communication.

The Java version is hosted on GitHub. To run this demo in an Ubuntu machine, execute the following commands in
the shell:

git clone https://github.com/Kurento/kurento-tutorial-java.git
cd kurento-tutorial-java/kurento-magic-mirror
git checkout 6.1.0
mvn compile exec:java

The pre-requisites to run this Java demo are Git, JDK 7, and Maven. To install these tools in Ubuntu please execute
these commands:

2.4. Magic-Mirror Example 7

https://github.com/Kurento/kurento-tutorial-java
http://git-scm.com/
http://openjdk.java.net/projects/jdk7/
http://maven.apache.org/

FIWARE-Stream-Oriented-GE, Release

8 Chapter 2. Programmer Guide

FIWARE-Stream-Oriented-GE, Release

sudo apt-get install git
sudo apt-get install openjdk-7-jdk
sudo apt-get install maven

The JavaScript version is hosted on GitHub. To run this demo in an Ubuntu machine, execute the following commands
in the shell:

git clone https://github.com/Kurento/kurento-tutorial-js.git
cd kurento-tutorial-js/kurento-magic-mirror
git checkout 6.1.0
bower install
http-server

The pre-requisites to run this JavaScript demo are Git, Node.js, Bower, and a HTTP Server, for example a Node.js
http-servert:

sudo apt-get install git
curl -sL https://deb.nodesource.com/setup | sudo bash -
sudo apt-get install -y nodejs
sudo npm install -g bower
sudo npm install http-server -g

The Node.js version is hosted on GitHub. To run this demo in an Ubuntu machine, execute the following commands
in the shell:

git clone https://github.com/Kurento/kurento-tutorial-node.git
cd kurento-tutorial-node/kurento-magic-mirror
git checkout 6.1.0
npm install
npm start

The pre-requisites to run this Node.js demo are Git, Node.js, and Bower:

sudo apt-get install git
curl -sL https://deb.nodesource.com/setup | sudo bash -
sudo apt-get install -y nodejs
sudo npm install -g bower

Finally, open the demo (Java, JavaScript or Node.js) in the URL https://localhost:8443/ with a capable WebRTC
browser, for example, Google Chrome. To install it in Ubuntu (64 bits):

sudo apt-get install libxss1
wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
sudo dpkg -i google-chrome*.deb

2.5 More Examples

There are another sample applications that can be used to learn how to use the Stream Oriented GE Kurento, namely:

• Hello-world application. This is one of the simplest WebRTC application you can create with Kurento. It
implements a WebRTC loopback (a WebRTC media stream going from client to Kurento and back to the client).
You can check out the source code on GitHub for Java, Browser JavaScript and Node.js.

• One to many video call application. This web application consists video broadcasting with WebRTC. One peer
transmits a video stream and N peers receives it. This web application is a videophone (call one to one) based
on WebRTC. You can check out the source code on GitHub for Java and Node.js.

• One to one video call. You can check out the source code on GitHub for Java and Node.js.

2.5. More Examples 9

https://github.com/Kurento/kurento-tutorial-js
http://git-scm.com/
http://nodejs.org/
http://bower.io/
https://www.npmjs.org/package/http-server/
https://www.npmjs.org/package/http-server/
https://github.com/Kurento/kurento-tutorial-node
http://git-scm.com/
http://nodejs.org/
http://bower.io/
https://localhost:8443/
https://www.google.com/chrome/browser/
http://www.kurento.org/docs/current/tutorials.html#tutorial--hello-world
https://github.com/Kurento/kurento-tutorial-java/tree/master/kurento-hello-world
https://github.com/Kurento/kurento-tutorial-js/tree/master/kurento-hello-world
https://github.com/Kurento/kurento-tutorial-node/tree/master/kurento-hello-world
http://www.kurento.org/docs/current/tutorials.html#tutorial-webrtc-one-to-many-broadcast
https://github.com/Kurento/kurento-tutorial-java/tree/master/kurento-one2many-call
https://github.com/Kurento/kurento-tutorial-node/tree/master/kurento-one2many-call
http://www.kurento.org/docs/current/tutorials.html#tutorial-webrtc-one-to-one-video-call
https://github.com/Kurento/kurento-tutorial-java/tree/master/kurento-one2one-call
https://github.com/Kurento/kurento-tutorial-node/tree/master/kurento-one2one-call

FIWARE-Stream-Oriented-GE, Release

• Advanced one to one video call application. This is an enhanced version of the previous application recording
of the video communication, and also integration with an augmented reality filter. You can check out the source
code on GitHub for Java.

10 Chapter 2. Programmer Guide

http://www.kurento.org/docs/current/tutorials.html#tutorial-webrtc-one-to-one-video-call-with-recording-and-filtering
https://github.com/Kurento/kurento-tutorial-java/tree/master/kurento-one2one-call-advanced

CHAPTER 3

FIWARE Stream Oriented Generic Enabler - Installation and
Administration Guide

3.1 Introduction

This guide describes how to install the Stream-Oriented GE - Kurento. Kurento’s core element is the Kurento Media
Server (KMS), responsible for media transmission, processing, loading and recording. It is implemented in low level
technologies based on GStreamer to optimize the resource consumption.

3.1.1 Requirements

To guarantee the right working of the enabler RAM memory and HDD size should be at least:

• 4 GB RAM

• 16 GB HDD (this figure is not taking into account that multimedia streams could be stored in the same machine.
If so, HDD size must be increased accordingly)

3.1.2 Operating System

Kurento Media Server has to be installed on Ubuntu 14.04 LTS (64 bits).

3.1.3 Dependencies

If end-to-end testing is going to be performed, the following tools must be also installed in your system (Ubuntu):

• Open JDK 7:

sudo apt-get install openjdk-7-jdk

• Git:

sudo apt-get install git

• Chrome (latest stable version):

sudo apt-get install libxss1
wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
sudo dpkg -i google-chrome*.deb

• Maven:

11

http://openjdk.java.net/projects/jdk7/
http://git-scm.com/
https://www.google.com/chrome/browser/
http://maven.apache.org/

FIWARE-Stream-Oriented-GE, Release

sudo apt-get install maven

3.2 Installation

In order to install the latest stable Kurento Media Server version you have to type the following commands, one at a
time and in the same order as listed here. When asked for any kind of confirmation, reply affirmatively:

echo "deb http://ubuntu.kurento.org trusty kms6" | sudo tee /etc/apt/sources.list.d/kurento.list
wget -O - http://ubuntu.kurento.org/kurento.gpg.key | sudo apt-key add -
sudo apt-get update
sudo apt-get install kurento-media-server-6.0

After running these command, Kurento Media Server should be installed and started.

3.3 Configuration

The main Kurento Media Server configuration file is located in /etc/kurento/kurento.conf.json. After a fresh installation
this file is the following:

{
"mediaServer" : {
"resources": {
// //Resources usage limit for raising an exception when an object creation is attempted
// "exceptionLimit": "0.8",
// // Resources usage limit for restarting the server when no objects are alive
// "killLimit": "0.7",

// Garbage collector period in seconds
"garbageCollectorPeriod": 240

},
"net" : {

// Uncomment just one of them
/*
"rabbitmq": {

"address" : "127.0.0.1",
"port" : 5672,
"username" : "guest",
"password" : "guest",
"vhost" : "/"

}

*/
"websocket": {

"port": 8888,
//"secure": {
// "port": 8433,
// "certificate": "defaultCertificate.pem",
// "password": ""
//},
//"registrar": {
// "address": "ws://localhost:9090",
// "localAddress": "localhost"
//},
"path": "kurento",
"threads": 10

}

12 Chapter 3. FIWARE Stream Oriented Generic Enabler - Installation and Administration Guide

FIWARE-Stream-Oriented-GE, Release

}
}

}

As of Kurento Media Server version 6, in addition to this general configuration file, the specific features of KMS are
tuned as individual modules. Each of these modules has its own configuration file:

• /etc/kurento/modules/kurento/MediaElement.conf.ini: Generic parameters for Media Elements.

• /etc/kurento/modules/kurento/SdpEndpoint.conf.ini: Audio/video parameters for SdpEndpoints (i.e. WebRt-
cEndpoint and RtpEndpoint).

• /etc/kurento/modules/kurento/WebRtcEndpoint.conf.ini: Specific parameters for WebRtcEndpoint.

• /etc/kurento/modules/kurento/HttpEndpoint.conf.ini: Specific parameters for HttpEndpoint.

If Kurento Media Server is located behind a NAT you need to use a STUN or TURN in order to achieve NAT traversal.
In most of cases, a STUN server will do the trick. A TURN server is only necessary when the NAT is symmetric.

In order to setup a STUN server you should uncomment the following lines in the Kurento Media Server configuration
file located on at /etc/kurento/modules/kurento/WebRtcEndpoint.conf.ini:

stunServerAddress=<stun_ip_address>
stunServerPort=<stun_port>

The parameter stunServerAddress should be an IP address (not domain name). There is plenty of public STUN servers
available, for example:

173.194.66.127:19302
173.194.71.127:19302
74.125.200.127:19302
74.125.204.127:19302
173.194.72.127:19302
74.125.23.127:3478
77.72.174.163:3478
77.72.174.165:3478
77.72.174.167:3478
77.72.174.161:3478
208.97.25.20:3478
62.71.2.168:3478
212.227.67.194:3478
212.227.67.195:3478
107.23.150.92:3478
77.72.169.155:3478
77.72.169.156:3478
77.72.169.164:3478
77.72.169.166:3478
77.72.174.162:3478
77.72.174.164:3478
77.72.174.166:3478
77.72.174.160:3478
54.172.47.69:3478

In order to setup a TURN server you should uncomment the following lines in the Kurento Media Server configuration
file located on at /etc/kurento/modules/kurento/WebRtcEndpoint.conf.ini:

turnURL=user:password@address:port

As before, TURN address should be an IP address (not domain name). See some examples of TURN configuration
below:

3.3. Configuration 13

https://en.wikipedia.org/wiki/STUN
https://en.wikipedia.org/wiki/Traversal_Using_Relays_around_NAT
https://en.wikipedia.org/wiki/NAT_traversal

FIWARE-Stream-Oriented-GE, Release

turnURL=kurento:kurento@193.147.51.36:3478

... or using a free access numb STUN/TURN server as follows:

turnURL=user:password@66.228.45.110:3478

An open source implementation of a TURN server is coturn.

3.4 Sanity check Procedures

3.4.1 End to End testing

Kurento Media Server must be installed and started before running the following example, which is called magic-
mirror and it is developed with the Kurento Java Client. You should run this example in a machine with camera and
microphone since live media is needed. To launch the application first you need to clone the GitHub project where it
is hosted and then run the main class, as follows:

git clone https://github.com/Kurento/kurento-tutorial-java.git
cd kurento-tutorial-java/kurento-magic-mirror
mvn compile exec:java

These commands starts an HTTP server at the localhost in the port 8443. Therefore, please open the web application
connecting to the URL https://localhost:8443/ through a WebRTC capable browser (e.g. Chrome). Click on the Start
button and grant the access to the camera and microphone. After the SDP negotiation an enhanced video mirror should
start. Kurento Media Server is processing media in real time, detecting faces and overlying an image on the top of
them. This is a simple example of augmented reality in real time with Kurento.

Take into account that this setup is assuming that port TCP 8080 is available in your system. If you would like to use
another one, simply launch the demo as follows:

mvn compile exec:java -Dserver.port=<custom-port>

... and open the application on http://localhost:custom-port/.

3.4.2 List of Running Processes

To verify that Kurento Media Server is up and running use the command:

ps -ef | grep kurento

The output should include the kurento-media-server process:

nobody 1270 1 0 08:52 ? 00:01:00 /usr/bin/kurento-media-server

3.4.3 Network interfaces Up & Open

Unless configured otherwise, Kureno Media Server will open the port TCP 8888 to receive requests and send responses
to/from by means of the Kurento clients (by means of the Kurento Protocol Open API). To verify if this port is listening,
execute the following command:

sudo netstat -putan | grep kurento

The output should be similar to the following:

14 Chapter 3. FIWARE Stream Oriented Generic Enabler - Installation and Administration Guide

https://code.google.com/p/coturn/
https://localhost:8443/
http://localhost:custom-port/

FIWARE-Stream-Oriented-GE, Release

tcp6 0 0 :::8888 :::* LISTEN 1270/kurento-media-server

3.5 Diagnosis Procedures

3.5.1 Resource consumption

Resource consumption documented in this section has been measured in two different scenarios:

• Low load: all services running, but no stream being served.

• High load: heavy load scenario where 20 streams are requested at the same time.

Under the above circumstances, the top command showed the following results in the hardware described below:

Machine Type Physical Machine
CPU Intel(R) Core(TM) i5-3337U CPU @ 1.80GHz
RAM 16 GB
HDD 500 GB
Operating System Ubuntu 14.04

Kurento Media Server gave the following result:

Low Usage Heavy Usage
CPU 0.0 % 76.9 %
RAM 81.92 MB 655.36 MB

3.5.2 I/O flows

Use the following commands to start and stop Kurento Media Server respectively:

sudo service kurento-media-server-6.0 start
sudo service kurento-media-server-6.0 stop

Kurento Media Server logs file are stored in the folder /var/log/kurento-media-server/. The content of this folder is as
follows:

• media-server_<timestamp>.<log_number>.<kms_pid>.log: Current log for Kurento Media Server

• media-server_error.log: Third-party errors

• logs: Folder that contains the KMS rotated logs

When KMS starts correctly, this trace is written in the log file:

[time] [0x10b2f880] [info] KurentoMediaServer main.cpp:239 main() Mediaserver started

3.5. Diagnosis Procedures 15

FIWARE-Stream-Oriented-GE, Release

16 Chapter 3. FIWARE Stream Oriented Generic Enabler - Installation and Administration Guide

CHAPTER 4

FIWARE Stream Oriented Generic Enabler - Architecture Description

4.1 Copyright

Copyright © 2010-2015 by Unversidad Rey Juan Carlos. All Rights Reserved.

4.2 Legal Notice

Please check the following Legal Notice to understand the rights to use these specifications.

4.3 Overview

The Stream Oriented GE provides a framework devoted to simplify the development of complex interactive multimedia
applications through a rich family of APIs and toolboxes. It provides a media server and a set of client APIs making
simple the development of advanced video applications for WWW and smartphone platforms. The Stream Oriented
GE features include group communications, transcoding, recording, mixing, broadcasting and routing of audiovisual
flows. It also provides advanced media processing capabilities involving computer vision, video indexing, augmented
reality and speech analysis.

The Stream Oriented GE modular architecture makes simple the integration of third party media processing algorithms
(i.e. speech recognition, sentiment analysis, face recognition, etc.), which can be transparently used by application
developers as the rest of built-in features.

The Stream Oriented GE’s core element is a Media Server, responsible for media transmission, processing, loading
and recording. It is implemented in low level technologies based on GStreamer to optimize the resource consumption.
It provides the following features:

• Networked streaming protocols, including HTTP (working as client and server), RTP and WebRTC.

• Group communications (MCUs and SFUs functionality) supporting both media mixing and media rout-
ing/dispatching.

• Generic support for computational vision and augmented reality filters.

• Media storage supporting writing operations for WebM and MP4 and playing in all formats supported by
GStreamer.

• Automatic media transcodification between any of the codecs supported by GStreamer including VP8, H.264,
H.263, AMR, OPUS, Speex, G.711, etc.

17

https://www.urjc.es/
http://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Open_Specification_Legal_Notice_(implicit_patents_license)

FIWARE-Stream-Oriented-GE, Release

4.4 Main Concepts

4.4.1 Signaling and media planes

The Stream Oriented GE, as most multimedia communication technologies out there, is built upon two concepts that
are key to all interactive communication systems:

• Signaling Plane. Module in charge of the management of communications, that is, it provides functions for
media negotiation, QoS parametrization, call establishment, user registration, user presence, etc.

• Media Plane. Module in charge of the media itself. So, functionalities such as media transport, media encod-
ing/decoding and media processing are part of it.

4.4.2 Media elements and media pipelines

The Stream Oriented GE is based on two concepts that act as building blocks for application developers:

• Media Elements:. A Media element is a functional unit performing a specific action on a media stream. Media
elements are a way of every capability is represented as a self-contained “black box” (the media element) to the
application developer, who does not need to understand the low-level details of the element for using it. Media
elements are capable of receiving media from other elements (through media sources) and of sending media to
other elements (through media sinks). Depending on their function, media elements can be split into different
groups:

– Input Endpoints: Media elements capable of receiving media and injecting it into a pipeline. There are
several types of input endpoints. File input endpoints take the media from a file, Network input endpoints
take the media from the network, and Capture input endpoints are capable of capturing the media stream
directly from a camera or other kind of hardware resource.

– Filters: Media elements in charge of transforming or analyzing media. Hence there are filters for perform-
ing operations such as mixing, muxing, analyzing, augmenting, etc.

– Hubs: Media Objects in charge of managing multiple media flows in a pipeline. A Hub has several hub
ports where other media elements are connected. Depending on the Hub type, there are different ways to
control the media. For example, there are a Hub called Composite that merge all input video streams in a
unique output video stream with all inputs in a grid.

– Output Endpoints: Media elements capable of taking a media stream out of the pipeline. Again, there
are several types of output endpoints specialized in files, network, screen, etc.

Fig. 4.1: A media element is a functional unit providing a specific media capability, which is exposed to application
developers as a “black box”

• Media Pipeline: A Media Pipeline is a chain of media elements, where the output stream generated by one
element (source) is fed into one or more other elements input streams (sinks). Hence, the pipeline represents a
“machine” capable of performing a sequence of operations over a stream.

18 Chapter 4. FIWARE Stream Oriented Generic Enabler - Architecture Description

FIWARE-Stream-Oriented-GE, Release

Fig. 4.2: Example of a Media Pipeline implementing an interactive multimedia application receiving media from a
WebRtcEndpoint, overlaying and image on the detected faces and sending back the resulting stream

4.4.3 Agnostic media adapter

Using the Stream Oriented GE APIs, developers are able to compose the available media elements, getting the desired
pipeline. There is a challenge in this scheme, as different media elements might require different input media formats
than the output produced by their preceding element in the chain. For example, if we want to connect a WebRTC (VP8
encoded) or a RTP (H.264/H.263 encoded) video stream to a face recognition media element implemented to read raw
RGB format, a transcoding is necessary.

Developers, specially during the initial phases of application development, might want to simplify development and
abstract this heterogeneity, the Stream Oriented GE provides an automatic converter of media formats called the
agnostic media adapter. Whenever a media element’s source is connected to another media element’s sink, our
framework verifies if media adaption and transcoding is necessary and, in case it is, it transparently incorporates the
appropriate transformations making possible the chaining of the two elements into the resulting pipeline.

Hence, this agnostic media adapter capability fully abstracts all the complexities of media codecs and formats. This
may significantly accelerate the development process, specially when developers are not multimedia technology ex-
perts. However, there is a price to pay. Transcoding may be a very CPU expensive operation. The inappropriate design
of pipelines that chain media elements in a way that unnecessarily alternate codecs (e.g. going from H.264, to raw, to
H.264 to raw again) will lead to very poor performance of applications.

Fig. 4.3: The agnostic media capability adapts formats between heterogeneous media elements making transparent
for application developers all complexities of media representation and encoding.

4.4. Main Concepts 19

FIWARE-Stream-Oriented-GE, Release

4.5 Generic Architecture

4.5.1 High level architecture

The conceptual representation of the GE architecture is shown in the following figure.

Fig. 4.4: The Stream Oriented GE architecture follows the traditional separation between signaling and media planes.

The right side of the picture shows the application, which is in charge of the signaling plane and contains the business
logic and connectors of the particular multimedia application being deployed. It can be build with any programming
technology like Java, Node.js, PHP, Ruby, .NET, etc. The application can use mature technologies such as HTTP and
SIP Servlets, Web Services, database connectors, messaging services, etc. Thanks to this, this plane provides access
to the multimedia signaling protocols commonly used by end-clients such as SIP, RESTful and raw HTTP based
formats, SOAP, RMI, CORBA or JMS. These signaling protocols are used by client side of applications to command
the creation of media sessions and to negotiate their desired characteristics on their behalf. Hence, this is the part of
the architecture, which is in contact with application developers and, for this reason, it needs to be designed pursuing
simplicity and flexibility.

On the left side, we have the Media Server, which implements the media plane capabilities providing access to the low-
level media features: media transport, media encoding/decoding, media transcoding, media mixing, media processing,
etc. The Media Server must be capable of managing the multimedia streams with minimal latency and maximum
throughput. Hence the Media Server must be optimized for efficiency.

20 Chapter 4. FIWARE Stream Oriented Generic Enabler - Architecture Description

FIWARE-Stream-Oriented-GE, Release

4.5.2 APIs and interfaces exposed by the architecture

The capabilities of the media plane (Media Server) and signaling plane (Application) are exposed through a number
of APIs, which provide increasing abstraction levels. Following this, the role of the different APIs can be summarized
in the following way:

• Stream Oriented GE Open API: Is a network protocol exposing the Media Server capabilities through Web-
Socket (read more in the Stream Oriented Open API page).

• Java Client: Is a Java SE layer which consumes the Stream Oriented GE Open API and exposes its capabilities
through a simple-to-use modularity based on Java POJOs representing media elements and media pipelines. This
API is abstract in the sense that all the inherent complexities of the internal Open API workings are abstracted
and developers do not need to deal with them when creating applications. Using the Java Client only requires
adding the appropriate dependency to a maven project or to download the corresponding jar into the application
developer CLASSPATH. It is important to remark that the Java Client is a media-plane control API. In other
words, its objective is to expose the capability of managing media objects, but it does not provide any signaling
plane capabilities.

• JavaScript Client: Is a JavaScript layer which consumes the Stream Oriented GE Open API and exposes its
capabilities to JavaScript developers. It allow to build Node.js and browser based applications.

From an architectural perspective, application developers can use clients or the Open API directly for creating their
multimedia enabled applications. This opens a wide spectrum of potential usage scenarios ranging from web applica-
tions (written using the JavaScript client), desktop applications (written using the Java Client), distributed applications
(written using the Open API), etc.

4.6 Creating applications on top of the Stream Oriented GE Architec-
ture

The Stream Oriented GE Architecture has been specifically designed following the architectural principles of the
WWW. For this reason, creating a multimedia applications basing on it is a similar experience to creating a web
application using any of the popular web development frameworks.

At the highest abstraction level, web applications have an architecture comprised of three different layers:

• Presentation layer: Here we can find all the application code which is in charge of interacting with end users so
that information is represented in a comprehensive way user input is captured. This usually consists on HTML
pages.

• Application logic: This layer is in charge of implementing the specific functions executed by the application.

• Service layer: This layer provides capabilities used by the application logic such as databases, communications,
security, etc.

Following this parallelism, multimedia applications created using the Stream Oriented GE also respond to the same
architecture:

• Presentation layer: Is in charge of multimedia representation and multimedia capture. It is usually based on
specific build-in capabilities of the client. For example, when creating a browser-based application, the presen-
tation layer will use capabilities such as the <video> tag or the WebRTC PeerConnection and MediaStreams
APIs.

• Application logic: This layer provides the specific multimedia logic. In other words, this layer is in charge of
building the appropriate pipeline (by chaining the desired media elements) that the multimedia flows involved
in the application will need to traverse.

4.6. Creating applications on top of the Stream Oriented GE Architecture 21

FIWARE-Stream-Oriented-GE, Release

• Service layer: This layer provides the multimedia services that support the application logic such as media
recording, media ciphering, etc. The Media Server (i.e. the specific media elements) is the part of the Stream
Oriented GE architecture in charge of this layer.

Fig. 4.5: Applications created using the Stream Oriented GE (right) have an equivalent architecture to standard
WWW applications (left). Both types of applications may choose to place the application logic at the client or at the
server code.

This means that developers can choose to include the code creating the specific media pipeline required by their
applications at the client side (using a suitable client or directly with the Open API) or can place it at the server side.

Both options are valid but each of them drives to different development styles. Having said this, it is important to note
that in the WWW developers usually tend to maintain client side code as simple as possible, bringing most of their
application logic to the server. Reproducing this kind of development experience is the most usual way of using this
GE. That is, by locating the multimedia application logic at the server side, so that the specific media pipelines are
created using the the client for your favorite language.

4.7 Main Interactions

4.7.1 Interactions from a generic perspective

A typical Stream Oriented GE application involves interactions among three main modules:

• Client Application: which involves the native multimedia capabilities of the client platform plus the specific
client-side application logic. It can use Clients designed to client platforms (for example, JavaScript Client).

• Application Server: which involves an application server and the server-side application logic. It can use
Clients designed to server platforms (for example, Java Client for Java EE and JavaScript Client for Node.js).

• Media Server: which receives commands for creating specific multimedia capabilities (i.e. specific pipelines
adapted to the needs of specific applications)

22 Chapter 4. FIWARE Stream Oriented Generic Enabler - Architecture Description

FIWARE-Stream-Oriented-GE, Release

The interactions maintained among these modules depend on the specificities of each application. However, in general,
for most applications they can be reduced to the following conceptual scheme:

Fig. 4.6: Main interactions occur in two phases: negotiation and media exchange. Remark that the color of the
different arrows and boxes is aligned with the architectural figures presented above, so that, for example, orange
arrows show exchanges belonging to the Open API, blue arrows show exchanges belonging to the Thrift API, red
boxes are associated to the Media Server and green boxes with the Application Server.

Media negotiation phase

As it can be observed, at a first stage, a client (a browser in a computer, a mobile application, etc.) issues a mes-
sage requesting some kind of capability from the Stream Oriented GE. This message is based on a JSON RPC V2.0
representation and fulfills the Open API specification. It can be generated directly from the client application or, in
case of web applications, indirectly consuming the abstract HTML5 SDK. For instance, that request could ask for the
visualization of a given video clip.

When the Application Server receives the request, if appropriate, it will carry out the specific server side application
logic, which can include Authentication, Authorization and Accounting (AAA), CDR generation, consuming some
type of web service, etc.

After that, the Application Server processes the request and, according to the specific instructions programmed by the
developer, commands the Media Server to instantiate the suitable media elements and to chain them in an appropriate
media pipeline. Once the pipeline has been created successfully the server responds accordingly and the Application
Server forwards the successful response to the client, showing it how and where the media service can be reached.

During the above mentioned steps no media data is really exchanged. All the interactions have the objective of
negotiating the whats, hows, wheres and whens of the media exchange. For this reason, we call it the negotiation

4.7. Main Interactions 23

FIWARE-Stream-Oriented-GE, Release

phase. Clearly, during this phase only signaling protocols are involved.

Media exchange phase

After that, a new phase starts devoted to producing the actual media exchange. The client addresses a request for the
media to the Media Server using the information gathered during the negotiation phase. Following with the video-clip
visualization example mentioned above, the browser will send a GET request to the IP address and port of the Media
Server where the clip can be obtained and, as a result, an HTTP request with the media will be received.

Following the discussion with that simple example, one may wonder why such a complex scheme for just playing a
video, when in most usual scenarios clients just send the request to the appropriate URL of the video without requiring
any negotiation. The answer is straightforward. The Stream Oriented GE is designed for media applications involving
complex media processing. For this reason, we need to establish a two-phase mechanism enabling a negotiation before
the media exchange. The price to pay is that simple applications, such as one just downloading a video, also need to
get through these phases. However, the advantage is that when creating more advanced services the same simple
philosophy will hold. For example, if we want to add augmented reality or computer vision features to that video-clip,
we just need to create the appropriate pipeline holding the desired media element during the negotiation phase. After
that, from the client perspective, the processed clip will be received as any other video.

4.7.2 Specific interactions for commonly used services

Regardless of the actual type of session, all interactions follow the pattern described in section above. However, most
common services respond to one of the following two main categories:

RTP/WebRTC

The Stream Oriented GE allows the establishment of real time multimedia session between a peer client and the Media
Server directly through the use of RTP/RTCP or through WebRTC. In addition, the Media Server can be used to act as
media proxy for making possible the communication among different peer clients, which are mediated by the Stream
Oriented GE infrastructure. Hence, the GE can act as a conference bridge (Multi Conference Unit), as a machine-to-
machine communication system, as a video call recording system, etc. As shown in the picture, the client exposes
its media capabilities through an SDP (Session Description Protocol) payload encapsulated in a JSON object request.
Hence, the Application Server is able to instantiate the appropriate media element (either RTP or WebRTC end points),
and to require it to negotiate and offer a response SDP based on its own capabilities and on the offered SDP. When the
answer SDP is obtained, it is given back to the client and the media exchange can be started. The interactions among
the different modules are summarized in the following picture

As with the rest of examples shown above, the application developer is able to create the desired pipeline during the
negotiation phase, so that the real time multimedia stream is processed accordingly to the application needs. Just as
an example, imagine that we want to create a WebRTC application recording the media received from the client and
augmenting it so that if a human face is found, a hat will be rendered on top of it. This pipeline is schematically shown
in the figure below, where we assume that the Filter element is capable of detecting the face and adding the hat to it.

HTTP recorder

HTTP recording sessions are equivalent to playing sessions although, in this case, the media goes from the client to
the server using POST HTTP method. The negotiation phase hence starts with the client requesting to upload the
content and the Application Server creating the appropriate pipeline for doing it. This pipeline will always start with
an HttpPostEndpoint element. Further elements can be connected to that endpoint for filtering media, processing it or
storing it into a media repository. The specific interactions taking place in this type of session are shown in the figure
below

24 Chapter 4. FIWARE Stream Oriented Generic Enabler - Architecture Description

FIWARE-Stream-Oriented-GE, Release

Fig. 4.7: Interactions taking place in a Real Time Communications (RTC) session. During the negotiation phase,
a SDP message is exchanged offering the capabilities of the client. As a result, the Media Server generates an SDP
answer that can be used by the client for establishing the media exchange.

Fig. 4.8: During the negotiation phase, the application developer can create a pipeline providing the desired specific
functionality. For example, this pipeline uses a WebRtcEndpoint for communicating with the client, which is connected
to a RecorderEndpoint storing the received media stream and to an augmented reality filter, which feeds its output
media stream back to the client. As a result, the end user will receive its own image filtered (e.g. with a hat added onto
her head) and the stream will be recorded and made available for further recovery into a repository (e.g. a file).

4.7. Main Interactions 25

FIWARE-Stream-Oriented-GE, Release

Fig. 4.9: Example of pipeline for an HTTP recorder

26 Chapter 4. FIWARE Stream Oriented Generic Enabler - Architecture Description

FIWARE-Stream-Oriented-GE, Release

4.7.3 Basic Design Principles

The Stream Oriented GE is designed based on the following main principles:

• Separate Media and Signaling Planes. Signaling and media are two separate planes and therefore the Stream
Oriented GE is designed in a way that applications can handle separately those facets of multimedia processing.

• Distribution of Media and Application Services. Media Server and applications can be collocated, escalated or
distributed among different machines. A single application can invoke the services of more than one Media
Servers. The opposite also applies, that is, a Media Server can attend the requests of more than one application.

• Suitable for the Cloud. The Stream Oriented GE is suitable to be integrated into cloud environments to act as a
PaaS (Platform as a Service) component.

• Media Pipelines. Chaining Media Elements via Media Pipelines is an intuitive approach to challenge the com-
plexity of multimedia processing.

• Application development. Developers do not need to be aware of internal Media Server complexities, all the
applications can deployed in any technology or framework the developer like, from client to server. From
browsers to cloud services.

• End-to-end Communication Capability. The Stream Oriented GE provides end-to-end communication capabil-
ities so developers do not need to deal with the complexity of transporting, encoding/decoding and rendering
media on client devices.

• Fully Processable Media Streams. The Stream Oriented GE enables not only interactive interpersonal com-
munications (e.g. Skype-like with conversational call push/reception capabilities), but also human-to-machine
(e.g. Video on Demand through real-time streaming) and machine-to-machine (e.g. remote video recording,
multisensory data exchange) communications.

• Modular Processing of Media. Modularization achieved through media elements and pipelines allows defining
the media processing functionality of an application through a “graph-oriented” language, where the application
developer is able to create the desired logic by chaining the appropriate functionalities.

• Auditable Processing. The Stream Oriented GE is able to generate rich and detailed information for QoS moni-
toring, billing and auditing.

• Seamless IMS integration. The Stream Oriented GE is designed to support seamless integration into the IMS
infrastructure of Telephony Carriers.

• Transparent Media Adaptation Layer. The Stream Oriented GE provides a transparent media adaptation layer
to make the convergence among different devices having different requirements in terms of screen size, power
consumption, transmission rate, etc. possible.

4.7. Main Interactions 27

FIWARE-Stream-Oriented-GE, Release

28 Chapter 4. FIWARE Stream Oriented Generic Enabler - Architecture Description

CHAPTER 5

FIWARE Stream Oriented Generic Enabler - Open API Specification

The Stream Oriented API is a resource-oriented API accessed via WebSockets that uses JSON-RPC V2.0 based rep-
resentations for information exchange. An RPC call is represented by sending a Request message to a server. The
Request message has the following members:

• jsonrpc: a string specifying the version of the JSON-RPC protocol. It must be exactly 2.0.

• id: an unique identifier established by the client that contains a string or number. The server must reply with the
same value in the Response message. This member is used to correlate the context between both messages.

• method: a string containing the name of the method to be invoked.

• params: a structured value that holds the parameter values to be used during the invocation of the method.

When an RPC call is made by a client, the server replies with a response object. In the case of a success, the response
object contains the following members:

• jsonrpc: it must be exactly 2.0.

• id: it must match the value of the id member in the request object.

• result: structured value which contains the invocation result.

In the case of an error, the response object contains the following members:

• jsonrpc: it must be exactly 2.0.

• id: it must match the value of the id member in the request object.

• error: object describing the error through the following members:

– code: integer number that indicates the error type that occurred

– message: string providing a short description of the error.

– data: primitive or structured value that contains additional information about the error. It may be omitted.
The value of this member is defined by the server.

5.1 Create

Create message requests the creation of an element of the toolbox. The parameter type specifies the type of the object
to be created. The parameter constructorParams contains all the information needed to create the object. Each message
needs different constructorParams to create the object.

A sessionId parameter is included with the identifier of the current session. The value of this parameter is sent by
Kurento Media Server to the client in each response. Only the first request from client to server is allowed to not
include the sessionId (because at this point is unknown for the client).

29

FIWARE-Stream-Oriented-GE, Release

5.1.1 Request

A create request contains the following parameters:

• method (required, string). Value: create.

• params (required, object). Parameters for the invocation of the create message, containing these members:

– type (required, string). Media element to be created. Allowed Values:

* WebRtcEndpoint: This Endpoint offers media streaming using WebRTC.

* RtpEndpoint: Endpoint that provides bidirectional content delivery capabilities with remote net-
worked peers through RTP protocol. It contains paired sink and source MediaPad for audio and
video.

* HttpPostEndpoint: This type of Endpoint provide unidirectional communications. Its MediaSource
are related to HTTP POST method. It contains sink MediaPad for audio and video, which provide
access to an HTTP file upload function.

* PlayerEndpoint: It provides function to retrieve contents from seekable sources in reliable mode (does
not discard media information) and inject them into KMS. It contains one MediaSource for each media
type detected.

* RecorderEndpoint: Provides function to store contents in reliable mode (doesn’t discard data). It
contains MediaSink pads for audio and video.

* FaceOverlayFilter: It detects faces in a video feed. The face is then overlaid with an image.

* ZBarFilter: This Filter detects QR and bar codes in a video feed. When a code is found, the filter
raises a CodeFound.

* GStreamerFilter: This is a generic Filter interface, that creates GStreamer filters in the media server.

* Composite: A Hub that mixes the audio stream of its connected sources and constructs a grid with the
video streams of its connected sources into its sink.

* Dispatcher: A Hub that allows routing between arbitrary port pairs.

* DispatcherOneToMany: A Hub that sends a given source to all the connected sinks.

– constructorParams (required, object). Additional parameters. As minimum, the identifier of the media
pipeline should be included here.

– sessionId (required, string). Session identifier.

The following example shows a Request message requesting the creation of an object of the type PlayerEndpoint
within the pipeline 6829986 and the parameter uri:http://host/app/video.mp4 in the session c93e5bf0-4fd0-4888-9411-
765ff5d89b93:

• Body (application/json)

{
"jsonrpc": "2.0",
"id": 1,
"method": "create",
"params": {
"type": "PlayerEndPoint",
"constructorParams": {

"pipeline": "6829986",
"uri": "http://host/app/video.mp4"

},
"sessionId": "c93e5bf0-4fd0-4888-9411-765ff5d89b93"

30 Chapter 5. FIWARE Stream Oriented Generic Enabler - Open API Specification

FIWARE-Stream-Oriented-GE, Release

}
}

5.1.2 Response

The response message contains the id of the new object in the field value. This message id has to be used in other
requests of the protocol (as we will describe later). As stated before, the sessionId is also returned in each response.

A create response contains the following parameters:

• result (required, object). Result of the create invocation:

– value (required, number). Identifier of the created media element.

– sessionId (required, string). Session identifier.

The following example shows a typical response to a create message:

• Body (application/json)

{
"jsonrpc": "2.0",
"id": 1,
"result": {
"value": "442352747",
"sessionId": "c93e5bf0-4fd0-4888-9411-765ff5d89b93"

}
}

5.2 Invoke

Invoke message requests the invocation of an operation in the specified object. The parameter object indicates the id
of the object in which the operation will be invoked. The parameter operation carries the name of the operation to
be executed. Finally, the parameter operationParams has the parameters needed to execute the operation. The object
specified has to understand the

5.2.1 Request

An invoke request contains the following parameters:

• method (required, string). Value is invoke.

• params (required, object)

– object (required, number). Identifier of the source media element.

* operation (required, string). Operation invoked. Allowed Values:

· connect. Connect two media elements.

· play. Start the play of a media (PlayerEndPoint).

· record. Start the record of a media (RecorderEndPoint).

– operationParams (optional, object).

* sink (required, number). Identifier of the sink media element.

* sessionId (required, string). Session identifier.

5.2. Invoke 31

FIWARE-Stream-Oriented-GE, Release

The following example shows a Request message requesting the invocation of the operation connect on the object
442352747 with parameter sink 6829986. The sessionId is also included as is mandatory for all requests in the session
(except the first one):

• Body (application/json)

{
"jsonrpc": "2.0",
"id": 2,
"method": "invoke",
"params": {
"object": "442352747", "operation": "connect",
"operationParams": {

"sink": "6829986"
},
"sessionId": "c93e5bf0-4fd0-4888-9411-765ff5d89b93"

}
}

5.2.2 Response

The response message contains the value returned while executing the operation invoked in the object or nothing if the
operation doesn’t return any value.

An invoke response contains the following parameters:

• result (required, object)

– sessionId (required, string). Session identifier.

The following example shows a typical response while invoking the operation connect (that doesn’t return anything):

• Body (application/json)

{
"jsonrpc": "2.0",
"result": {
"sessionId": "c93e5bf0-4fd0-4888-9411-765ff5d89b93"

},
"id": 2

}

5.3 Release

Release message requests the release of the specified object. The parameter object indicates the id of the object to be
released:

5.3.1 Request

A release request contains the following parameters:

• method (required, string). Value is release.

• params (required, object).

– object (required, number). Identifier of the media element to be released.

32 Chapter 5. FIWARE Stream Oriented Generic Enabler - Open API Specification

FIWARE-Stream-Oriented-GE, Release

* sessionId (required, string). Session identifier.

• Body (application/json)

{
"jsonrpc": "2.0",
"id": 3,
"method": "release",
"params": {
"object": "442352747",
"sessionId": "c93e5bf0-4fd0-4888-9411-765ff5d89b93"

}
}

5.3.2 Response

A release response contains the following parameters:

• result (required, object)

– sessionId (required, string). Session identifier.

The response message only contains the sessionID. The following example shows the typical response of a release
request:

• Body (application/json)

{
"jsonrpc":"2.0",
"id":3,
"result": {
"sessionId":"c93e5bf0-4fd0-4888-9411-765ff5d89b93"

}
}

5.4 Subscribe

Subscribe message requests the subscription to a certain kind of events in the specified object. The parameter object
indicates the id of the object to subscribe for events. The parameter type specifies the type of the events. If a client is
subscribed for a certain type of events in an object, each time an event is fired in this object, a request with method
onEvent is sent from Kurento Media Server to the client. This kind of request is described few sections later.

5.4.1 Request

A subscribe reqest contains the following parameters:

• method (required, string). Value is subscribe.

• params (required, object). Parameters for the invocation of the create message, containing these members:

– constructorParams (required, object). Additional parameters. As minimum, the identifier of the media
pipeline should be included here.

* type (required, string). Media event to be subscribed. Allowed Values:

· CodeFound Event: raised by a ZBarFilter when a code is found in the data being streamed.

5.4. Subscribe 33

FIWARE-Stream-Oriented-GE, Release

· ConnectionStateChanged: Indicates that the state of the connection has changed.

· ElementConnected: Indicates that an element has been connected to other.

· ElementDisconnected: Indicates that an element has been disconnected.

· EndOfStream: Event raised when the stream that the element sends out is finished.

· Error: An error related to the MediaObject has occurred.

· MediaSessionStarted: Event raised when a session starts. This event has no data.

· MediaSessionTerminated: Event raised when a session is terminated. This event has no data.

· MediaStateChanged: Indicates that the state of the media has changed.

· ObjectCreated: Indicates that an object has been created on the mediaserver.

· ObjectDestroyed: Indicates that an object has been destroyed on the mediaserver.

· OnIceCandidate: Notify of a new gathered local candidate.

· OnIceComponentStateChanged: Notify about the change of an ICE component state.

· OnIceGatheringDone: Notify that all candidates have been gathered.

– sessionId (required, string). Session identifier.

The following example shows a request message requesting the subscription of the event type EndOfStream on the
object 311861480. The sessionId is also included:

• Body (application/json)

{
"jsonrpc":"2.0",
"id":4,
"method":"subscribe",
"params":{
"object":"311861480",
"type":"EndOfStream",
"sessionId":"c93e5bf0-4fd0-4888-9411-765ff5d89b93"

}
}

5.4.2 Response

The response message contains the subscription identifier. This value can be used later to remove this subscription.

A subscribe response contains the following parameters:

• result (required, object). Result of the subscription invocation. This object contains the following members:

• value (required, number). Identifier of the media event. * sessionId (required, string). Session identifier.

The following example shows the response of subscription request. The value attribute contains the subscription id:

• Body (application/json)

{
"jsonrpc":"2.0",
"id":4,
"result": {
"value":"353be312-b7f1-4768-9117-5c2f5a087429",
"sessionId":"c93e5bf0-4fd0-4888-9411-765ff5d89b93"

34 Chapter 5. FIWARE Stream Oriented Generic Enabler - Open API Specification

FIWARE-Stream-Oriented-GE, Release

}
}

5.5 Unsubscribe

Unsubscribe message requests the cancellation of a previous event subscription. The parameter subscription contains
the subscription id received from the server when the subscription was created.

5.5.1 Request

An unsubscribe request contains the following parameters:

• method (required, string). Value is unsubscribe.

• params (required, object).

– object (required, string). Media element in which the subscription is placed.

* subscription (required, number). Subscription identifier.

• sessionId (required, string). Session identifier.

The following example shows a Request message requesting the cancellation of the subscription 353be312-b7f1-4768-
9117-5c2f5a087429:

• Body (application/json)

{
"jsonrpc":"2.0",
"id":5,
"method":"unsubscribe",
"params": {
"subscription":"353be312-b7f1-4768-9117-5c2f5a087429",
"sessionId":"c93e5bf0-4fd0-4888-9411-765ff5d89b93"

}
}

5.5.2 Response

The response message only contains the sessionID. The following example shows the typical response of an unsub-
scription request:

An unsubscribe response contains the following parameters:

• result (required, object)

– sessionId (required, string). Session identifier.

For example:

• Body (application/json)

{
"jsonrpc":"2.0",
"id":5,
"result": {
"sessionId":"c93e5bf0-4fd0-4888-9411-765ff5d89b93"

5.5. Unsubscribe 35

FIWARE-Stream-Oriented-GE, Release

}
}

5.6 OnEvent

When a client is subscribed to a type of events in an object, the server sends an onEvent request each time an event of
that type is fired in the object. This is possible because the Stream Oriented open API is implemented with websockets
and there is a full duplex channel between client and server. The request that server send to client has all the information
about the event:

• data: Information about this specific of this type of event.

• source: the object source of the event.

• type: The type of the event.

• subscription: subscription id for which the event is fired.

5.6.1 Request

An OnEvent request contains the following parameters:

• method (required, string). Value is onEvent.

• params (required, object).

– value (required, object)

* data (required, object)

· object (optional, string). Media element target.

· source (optional, string). Media element source.

· tags (optional, string). Media element metadata.

· timestamp (optional, number). Media server time and date.

– object (required, object).Media element identifier.

– type (required, string). Same type identifier described on subscribe message (i.e.: CodeFound, Connec-
tionStateChanged, ElementConnected, ElementDisconnected, EndOfStream, Error, MediaSessionStarted,
MediaSessionTerminated, MediaStateChanged, ObjectCreated, ObjectDestroyed, OnIceCandidate, On-
IceComponentStateChanged, OnIceGatheringDone)

The following example shows a notification sent for server to client to notify an event of type EndOfStream in the
object 311861480 with subscription 353be312-b7f1-4768-9117-5c2f5a087429:

• Body (application/json)

{
"jsonrpc": "2.0",
"id": 6,
"method": "onEvent",
"params": {
"value": {

"data":{
"source":"311861480",
"type":"EndOfStream"

},

36 Chapter 5. FIWARE Stream Oriented Generic Enabler - Open API Specification

FIWARE-Stream-Oriented-GE, Release

"object":"311861480",
"subscription":"353be312-b7f1-4768-9117-5c2f5a087429",
"type":"EndOfStream",

},
"sessionId":"4f5255d5-5695-4e1c-aa2b-722e82db5260"

}
}

5.6.2 Response

There is no response to the onEvent message.

5.6. OnEvent 37

	Introduction
	Background and Detail

	Programmer Guide
	Basic Setup
	Programming with the Stream Oriented GE in Java
	Programming with the Stream Oriented GE in JavaScript
	Magic-Mirror Example
	More Examples

	FIWARE Stream Oriented Generic Enabler - Installation and Administration Guide
	Introduction
	Installation
	Configuration
	Sanity check Procedures
	Diagnosis Procedures

	FIWARE Stream Oriented Generic Enabler - Architecture Description
	Copyright
	Legal Notice
	Overview
	Main Concepts
	Generic Architecture
	Creating applications on top of the Stream Oriented GE Architecture
	Main Interactions

	FIWARE Stream Oriented Generic Enabler - Open API Specification
	Create
	Invoke
	Release
	Subscribe
	Unsubscribe
	OnEvent

