

 Navigation

 	
 index

 	
 next |

 	FIWARE-Stream-Oriented-GE documentation

	Programmers Guide
	Introduction

	Programmer Guide

	Installation and Administration Guide
	Introduction

	Installation

	Configuration

	Sanity check Procedures

	Diagnosis Procedures

	Architecture Description
	Copyright

	Legal Notice

	Overview

	Main Concepts

	Generic Architecture

	Creating applications on top of the Stream Oriented GE Architecture

	Main Interactions

	Open API Specification
	Create

	Invoke

	Release

	Subscribe

	Unsubscribe

	OnEvent

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FIWARE-Stream-Oriented-GE documentation

FIWARE Stream Oriented Generic Enabler - Programmers Guide

Introduction

The Stream Oriented GE Kurento is a multimedia platform aimed to help
developers to add multimedia capabilities to their applications. The core
element is the Kurento Media Server (KMS), a
Gstreamer [http://gstreamer.freedesktop.org/] based multimedia engine that
provides the following features:

	Networked streaming protocols, including HTTP, RTP and WebRTC.

	Media transcodification between any of the codecs currently supported by
Gstreamer.

	Generic support for computational vision and augmented reality filters.

	Media storage supporting writing operations for WebM and MP4 and
reading operations for any of Gstreamer’s muxers.

Kurento Java and JavaScript clients are available for developers. These
clients are libraries to connect to KMS and this way incorporate the above
features in applications.

Background and Detail

This User and Programmers Guide relates to the Stream Oriented GE which is part
of the Data/Context Management chapter. Please find more information about
this Generic Enabler in the following Open Specification.

Programmer Guide

The Stream Oriented GE Kurento software is released under
LGPL version 2.1 [http://www.gnu.org/licenses/lgpl-2.1.html] license. This
is quite a convenient license for programmers, but it is still recommended you
check if it actually fits your application needs.

Basic Setup

First of all, developers must install Kurento Media Server. Please review the
installation guide. In short, KMS can be installed in an
Ubuntu 14.04 machine as follows:

echo "deb http://ubuntu.kurento.org trusty kms6" | sudo tee /etc/apt/sources.list.d/kurento.list
wget -O - http://ubuntu.kurento.org/kurento.gpg.key | sudo apt-key add -
sudo apt-get update
sudo apt-get install kurento-media-server-6.0

Once a Kurento Media Server is installed, you need a Kurento Client to create
your own applications with advanced media capabilities. A Kurento Client is a
programming library used to control the Kurento Media Server from an
application. Communication between a Kurento Client and the Kurento Media
Server is implemented by the Stream Oriented GE Open API.
This communication beetween Kurento Clients and Kurento Media Server is done by
means of a WebSocket.

There are available Kurento Client libraries in Java and JavaScript. These
libraries are based on the concept of Media Element. A Media Element holds a
specific media capability. For example, the media element called
WebRtcEndpoint holds the capability of sending and receiving WebRTC media
streams, the media element called RecorderEndpoint has the capability of
recording into the file system any media streams it receives, the
FaceOverlayFilter detects faces on the exchanged video streams and adds a
specific overlaid image on top of them, etc. Kurento exposes a rich toolbox of
media elements as part of its APIs.

The following sections provides information for create web applications with the
Stream Oriented GE using Java and JavaScript.

Programming with the Stream Oriented GE in Java

The Kurento Java Client is provided as Maven [http://maven.apache.org/]
dependency in
Maven Central repository [http://search.maven.org/#search%7Cga%7C1%7Ckurento-client].
To use it in a Maven application you have to include the following dependencies
in your pom.xml:

<dependencies>
 <dependency>
 <groupId>org.kurento</groupId>
 <artifactId>kurento-client</artifactId>
 <version>6.1.0</version>
 </dependency>
</dependencies>

KurentoClient is the Java class used to connect to Kurento Media Server. This
class has several static factory methods to create instances from it. In the
following code snippet you can see how to create a KurentoClient instance:

KurentoClient kurento = KurentoClient.create("ws://localhost:8888/kurento");

A MediaPipeline object is required to build media services. The method
createMediaPipeline() of a KurentoClient object can be used for this
purpose:

MediaPipeline pipeline = kurento.createMediaPipeline();

Media elements within a pipeline can be connected to build services, but they
are isolated from the rest of the system. Media elements are created using the
builder pattern allowing a flexible initialization. Mandatory parameters must
be provided in the builder constructor. Optional parameters are set to defaults
unless the application overrides their values using setter methods in the
builder object. When the builder is configured, the object can be created using
its build() method. In the following snippet, several media elements are
created:

// Protocols and codecs
WebRtcEndpoint webRtcEndpoint = new WebRtcEndpoint.Builder(pipeline).build();

HttpPostEndpoint httpPostEndpoint = new HttpPostEndpoint.Builder(pipeline).build();

RtpEndpoint rtpEndpoint = new RtpEndpoint.Builder(pipeline).build();

// Media repository
PlayerEndpoint playerEndpoint = new PlayerEndpoint.Builder(pipeline, "http://files.kurento.org/video/filter/fiwarecut.mp4").build();

RecorderEndpoint recorderEndpoint = new RecorderEndpoint.Builder(pipeline, "file:///tmp/recording.webm").build();

// Filters
FaceOverlayFilter faceOverlayFilter = new FaceOverlayFilter.Builder(pipeline).build();

ZBarFilter zBarFilter = new ZBarFilter.Builder(pipeline).build();

GStreamerFilter gstreamerFilter = new GStreamerFilter.Builder(pipeline, "videoflip method=4").build();

// Group communications
Composite composite = new Composite.Builder(pipeline).build();

Dispatcher dispatcher = new Dispatcher.Builder(pipeline).build();

DispatcherOneToMany dispatcherOneToMany = new DispatcherOneToMany.Builder(pipeline).build();

From the application developer perspective, Media Elements are like Lego pieces:
you just need to take the elements needed for an application and connect them
following the desired topology. Hence, when creating a pipeline, developers
need to determine the capabilities they want to use (the media elements) and
the topology determining which media elements provide media to which other
media elements (the connectivity). The connectivity is controlled through the
connect primitive, exposed on all Kurento Client APIs. This primitive is
always invoked in the element acting as source and takes as argument the
sink element following this scheme:

sourceMediaElement.connect(sinkMediaElement);

Programming with the Stream Oriented GE in JavaScript

The Kurento JavaScript Client is provided as Bower [http://bower.io/]
dependency in Bower repository [http://bower.io/search/?q=kurento-client].
To use it in a Bower application you have to include the following dependencies
in your bower.json:

"dependencies": {
 "kurento-client": "6.1.0",
}

First, you need to create an instance of the KurentoClient class that will
manage the connection with the Kurento Media Server, so you need to provide the
URI of its WebSocket:

kurentoClient(ws_uri, function(error, kurentoClient) {
 if (error) {
 // Error connecting to KMS
 }

 // Success connecting to KMS

});

The second step is to create a pipeline using the previously created
kurentoClient, as follows:

kurentoClient.create('MediaPipeline', function(error, pipeline) {
 if (error) {
 // Error creating MediaPipeline
 }

 // Success creating MediaPipeline
});

Then we should create the media elements. The following snippet shows how to
create several media elements:

// Protocols and codecs
pipeline.create('WebRtcEndpoint', function(error, webRtcEndpoint) {
 if (error) {
 // Error creating WebRtcEndpoint
 }

 // Success creating WebRtcEndpoint
});

pipeline.create('HttpPostEndpoint', function(error, httpPostEndpoint) {
 if (error) {
 // Error creating HttpPostEndpoint
 }

 // Success creating HttpPostEndpoint
});

pipeline.create('RtpEndpoint', function(error, rtpEndpoint) {
 if (error) {
 // Error creating RtpEndpoint
 }

 // Success creating RtpEndpoint
});

// Media repository
pipeline.create('PlayerEndpoint', {uri : 'http://files.kurento.org/video/filter/fiwarecut.mp4'}, function(error, playerEndpoint) {
 if (error) {
 // Error creating PlayerEndpoint
 }

 // Success creating PlayerEndpoint
});

pipeline.create('RecorderEndpoint', {uri : 'file:///tmp/recording.webm'}, function(error, recorderEndpoint) {
 if (error) {
 // Error creating RecorderEndpoint
 }

 // Success creating RecorderEndpoint
});

// Filters
pipeline.create('FaceOverlayFilter', function(error, faceOverlayFilter) {
 if (error) {
 // Error creating FaceOverlayFilter
 }

 // Success creating FaceOverlayFilter
});

pipeline.create('ZBarFilter', function(error, zBarFilter) {
 if (error) {
 // Error creating ZBarFilter
 }

 // Success creating WebRtcEndpoint
});

pipeline.create('GStreamerFilter', {command : 'videoflip method=4'}, function(error, recorderEndpoint) {
 if (error) {
 // Error creating GStreamerFilter
 }

 // Success creating GStreamerFilter
});

// Group communications
pipeline.create('Composite', function(error, composite) {
 if (error) {
 // Error creating Composite
 }

 // Success creating Composite
});

pipeline.create('Dispatcher', function(error, dispatcher) {
 if (error) {
 // Error creating Dispatcher
 }

 // Success creating Dispatcher
});

pipeline.create('DispatcherOneToMany', function(error, dispatcherOneToMany) {
 if (error) {
 // Error creating DispatcherOneToMany
 }

 // Success creating DispatcherOneToMany
});

Finally, media elements can be connected. The method connect() of the Media
Elements is always invoked in the element acting as source and takes as
argument the as sink element. For example a WebRtcEndpoint connected to
itself (loopback):

webRtc.connect(webRtc, function(error) {
 if (error) {
 // Error connecting media elements
 }

 // Success connecting media elements
});

Magic-Mirror Example

The Magic-Mirror web application is a good example to introduce the principles
of programming with Kurento. This application uses computer vision and
augmented reality techniques to add a funny hat on top of faces.The following
picture shows a screenshot of the demo running in a web browser:

[image: Magic Mirror Screenshot]

The interface of the application (an HTML web page) is composed by two HTML5
video tags: one showing the local stream (as captured by the device webcam) and
the other showing the remote stream sent by the media server back to the client.

The logic of the application is quite simple: the local stream is sent to the
Kurento Media Server, which returns it back to the client with a filter
processing. This filtering consists in faces detection and overlaying of an
image on the top of them. To implement this behavior we need to create a Media
Pipeline composed by two Media Elements: a WebRtcEndpoint connected to an
FaceOverlayFilter. This filter element is connected again to the
WebRtcEndpoint‘s sink and then the stream is send back (to browser). This
media pipeline is illustrated in the following picture:

[image: Magic Mirror Media Pipeline]

This demo has been implemented in Java, Javascript, and also Node.js. Java
implementation uses the Kurento Java Client, while JavScript and Node.js
uses the Kurento JavaScript Client. In addition, these three demos use
Kurento JavaScript Utils library in the client-side. This is an utility
JavaScript library aimed to simplify the development of WebRTC applications. In
these demos, the function WebRtcPeer.startSendRecv is used to abstract the
WebRTC internal details (i.e. PeerConnection and getUserStream) and makes
possible to start a full-duplex WebRTC communication.

The Java version is hosted on
GitHub [https://github.com/Kurento/kurento-tutorial-java]. To run this demo
in an Ubuntu machine, execute the following commands in the shell:

git clone https://github.com/Kurento/kurento-tutorial-java.git
cd kurento-tutorial-java/kurento-magic-mirror
git checkout 6.1.0
mvn compile exec:java

The pre-requisites to run this Java demo are Git [http://git-scm.com/],
JDK 7 [http://openjdk.java.net/projects/jdk7/], and
Maven [http://maven.apache.org/]. To install these tools in Ubuntu please
execute these commands:

sudo apt-get install git
sudo apt-get install openjdk-7-jdk
sudo apt-get install maven

The JavaScript version is hosted on
GitHub [https://github.com/Kurento/kurento-tutorial-js]. To run this demo
in an Ubuntu machine, execute the following commands in the shell:

git clone https://github.com/Kurento/kurento-tutorial-js.git
cd kurento-tutorial-js/kurento-magic-mirror
git checkout 6.1.0
bower install
http-server

The pre-requisites to run this JavaScript demo are
Git [http://git-scm.com/], Node.js [http://nodejs.org/],
Bower [http://bower.io/], and a HTTP Server, for example a
Node.js http-servert [https://www.npmjs.org/package/http-server/]:

sudo apt-get install git
curl -sL https://deb.nodesource.com/setup | sudo bash -
sudo apt-get install -y nodejs
sudo npm install -g bower
sudo npm install http-server -g

The Node.js version is hosted on
GitHub [https://github.com/Kurento/kurento-tutorial-node]. To run this demo
in an Ubuntu machine, execute the following commands in the shell:

git clone https://github.com/Kurento/kurento-tutorial-node.git
cd kurento-tutorial-node/kurento-magic-mirror
git checkout 6.1.0
npm install
npm start

The pre-requisites to run this Node.js demo are Git [http://git-scm.com/],
Node.js [http://nodejs.org/], and Bower [http://bower.io/]:

sudo apt-get install git
curl -sL https://deb.nodesource.com/setup | sudo bash -
sudo apt-get install -y nodejs
sudo npm install -g bower

Finally, open the demo (Java, JavaScript or Node.js) in the URL
https://localhost:8443/ with a capable WebRTC browser, for example,
Google Chrome [https://www.google.com/chrome/browser/]. To install it in
Ubuntu (64 bits):

sudo apt-get install libxss1
wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
sudo dpkg -i google-chrome*.deb

More Examples

There are another sample applications that can be used to learn how to use the
Stream Oriented GE Kurento, namely:

	Hello-world [http://www.kurento.org/docs/current/tutorials.html#tutorial–hello-world]
application. This is one of the simplest WebRTC application you can create
with Kurento. It implements a WebRTC loopback (a WebRTC media stream going
from client to Kurento and back to the client). You can check out the source
code on GitHub for
Java [https://github.com/Kurento/kurento-tutorial-java/tree/master/kurento-hello-world],
Browser JavaScript [https://github.com/Kurento/kurento-tutorial-js/tree/master/kurento-hello-world]
and
Node.js [https://github.com/Kurento/kurento-tutorial-node/tree/master/kurento-hello-world].

	One to many video call [http://www.kurento.org/docs/current/tutorials.html#tutorial-webrtc-one-to-many-broadcast]
application. This web application consists video broadcasting with WebRTC.
One peer transmits a video stream and N peers receives it. This web
application is a videophone (call one to one) based on WebRTC. You can check
out the source code on GitHub for
Java [https://github.com/Kurento/kurento-tutorial-java/tree/master/kurento-one2many-call]
and
Node.js [https://github.com/Kurento/kurento-tutorial-node/tree/master/kurento-one2many-call].

	One to one video call [http://www.kurento.org/docs/current/tutorials.html#tutorial-webrtc-one-to-one-video-call].
You can check out the source code on GitHub for
Java [https://github.com/Kurento/kurento-tutorial-java/tree/master/kurento-one2one-call]
and
Node.js [https://github.com/Kurento/kurento-tutorial-node/tree/master/kurento-one2one-call].

	Advanced one to one video call [http://www.kurento.org/docs/current/tutorials.html#tutorial-webrtc-one-to-one-video-call-with-recording-and-filtering]
application. This is an enhanced version of the previous application
recording of the video communication, and also integration with an augmented
reality filter. You can check out the source code on GitHub for
Java [https://github.com/Kurento/kurento-tutorial-java/tree/master/kurento-one2one-call-advanced].

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FIWARE-Stream-Oriented-GE documentation

FIWARE Stream Oriented Generic Enabler - Installation and Administration Guide

Introduction

This guide describes how to install the Stream-Oriented GE - Kurento. Kurento’s
core element is the Kurento Media Server (KMS), responsible for media
transmission, processing, loading and recording. It is implemented in low level
technologies based on GStreamer to optimize the resource consumption.

Requirements

To guarantee the right working of the enabler RAM memory and HDD size should be
at least:

	4 GB RAM

	16 GB HDD (this figure is not taking into account that multimedia
streams could be stored in the same machine. If so, HDD size must be
increased accordingly)

Operating System

Kurento Media Server has to be installed on Ubuntu 14.04 LTS (64 bits).

Dependencies

If end-to-end testing is going to be performed, the following tools must be also
installed in your system (Ubuntu):

	Open JDK 7 [http://openjdk.java.net/projects/jdk7/]:

sudo apt-get install openjdk-7-jdk

	Git [http://git-scm.com/]:

sudo apt-get install git

	Chrome [https://www.google.com/chrome/browser/] (latest stable version):

sudo apt-get install libxss1
wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
sudo dpkg -i google-chrome*.deb

	Maven [http://maven.apache.org/]:

sudo apt-get install maven

Installation

In order to install the latest stable Kurento Media Server version you have to
type the following commands, one at a time and in the same order as listed
here. When asked for any kind of confirmation, reply affirmatively:

echo "deb http://ubuntu.kurento.org trusty kms6" | sudo tee /etc/apt/sources.list.d/kurento.list
wget -O - http://ubuntu.kurento.org/kurento.gpg.key | sudo apt-key add -
sudo apt-get update
sudo apt-get install kurento-media-server-6.0

After running these command, Kurento Media Server should be installed and
started.

Configuration

The main Kurento Media Server configuration file is located in
/etc/kurento/kurento.conf.json. After a fresh installation this file is the
following:

{
 "mediaServer" : {
 "resources": {
 // //Resources usage limit for raising an exception when an object creation is attempted
 // "exceptionLimit": "0.8",
 // // Resources usage limit for restarting the server when no objects are alive
 // "killLimit": "0.7",
 // Garbage collector period in seconds
 "garbageCollectorPeriod": 240
 },
 "net" : {
 // Uncomment just one of them
 /*
 "rabbitmq": {
 "address" : "127.0.0.1",
 "port" : 5672,
 "username" : "guest",
 "password" : "guest",
 "vhost" : "/"
 }
 */
 "websocket": {
 "port": 8888,
 //"secure": {
 // "port": 8433,
 // "certificate": "defaultCertificate.pem",
 // "password": ""
 //},
 //"registrar": {
 // "address": "ws://localhost:9090",
 // "localAddress": "localhost"
 //},
 "path": "kurento",
 "threads": 10
 }
 }
 }
}

As of Kurento Media Server version 6, in addition to this general configuration
file, the specific features of KMS are tuned as individual modules. Each of
these modules has its own configuration file:

	/etc/kurento/modules/kurento/MediaElement.conf.ini: Generic parameters
for Media Elements.

	/etc/kurento/modules/kurento/SdpEndpoint.conf.ini: Audio/video
parameters for SdpEndpoints (i.e. WebRtcEndpoint and RtpEndpoint).

	/etc/kurento/modules/kurento/WebRtcEndpoint.conf.ini: Specific
parameters for WebRtcEndpoint.

	/etc/kurento/modules/kurento/HttpEndpoint.conf.ini: Specific
parameters for HttpEndpoint.

If Kurento Media Server is located behind a NAT you need to use a
STUN [https://en.wikipedia.org/wiki/STUN] or
TURN [https://en.wikipedia.org/wiki/Traversal_Using_Relays_around_NAT] in
order to achieve
NAT traversal [https://en.wikipedia.org/wiki/NAT_traversal]. In most of
cases, a STUN server will do the trick. A TURN server is only necessary when
the NAT is symmetric.

In order to setup a STUN server you should uncomment the following lines in the
Kurento Media Server configuration file located on at
/etc/kurento/modules/kurento/WebRtcEndpoint.conf.ini:

stunServerAddress=<stun_ip_address>
stunServerPort=<stun_port>

The parameter stunServerAddress should be an IP address (not domain name).
There is plenty of public STUN servers available, for example:

173.194.66.127:19302
173.194.71.127:19302
74.125.200.127:19302
74.125.204.127:19302
173.194.72.127:19302
74.125.23.127:3478
77.72.174.163:3478
77.72.174.165:3478
77.72.174.167:3478
77.72.174.161:3478
208.97.25.20:3478
62.71.2.168:3478
212.227.67.194:3478
212.227.67.195:3478
107.23.150.92:3478
77.72.169.155:3478
77.72.169.156:3478
77.72.169.164:3478
77.72.169.166:3478
77.72.174.162:3478
77.72.174.164:3478
77.72.174.166:3478
77.72.174.160:3478
54.172.47.69:3478

In order to setup a TURN server you should uncomment the following lines in the
Kurento Media Server configuration file located on at
/etc/kurento/modules/kurento/WebRtcEndpoint.conf.ini:

turnURL=user:password@address:port

As before, TURN address should be an IP address (not domain name). See some
examples of TURN configuration below:

turnURL=kurento:kurento@193.147.51.36:3478

... or using a free access numb STUN/TURN server as follows:

turnURL=user:password@66.228.45.110:3478

An open source implementation of a TURN server is
coturn [https://code.google.com/p/coturn/].

Sanity check Procedures

End to End testing

Kurento Media Server must be installed and started before running the following
example, which is called magic-mirror and it is developed with the
Kurento Java Client. You should run this example in a machine with camera and
microphone since live media is needed. To launch the application first you need
to clone the GitHub project where it is hosted and then run the main class, as
follows:

git clone https://github.com/Kurento/kurento-tutorial-java.git
cd kurento-tutorial-java/kurento-magic-mirror
mvn compile exec:java

These commands starts an HTTP server at the localhost in the port 8443.
Therefore, please open the web application connecting to the URL
https://localhost:8443/ through a WebRTC capable browser (e.g. Chrome). Click on
the Start button and grant the access to the camera and microphone. After the
SDP negotiation an enhanced video mirror should start. Kurento Media Server is
processing media in real time, detecting faces and overlying an image on the
top of them. This is a simple example of augmented reality in real time with
Kurento.

Take into account that this setup is assuming that port TCP 8080 is available in
your system. If you would like to use another one, simply launch the demo as
follows:

mvn compile exec:java -Dserver.port=<custom-port>

... and open the application on http://localhost:custom-port/.

List of Running Processes

To verify that Kurento Media Server is up and running use the command:

ps -ef | grep kurento

The output should include the kurento-media-server process:

nobody 1270 1 0 08:52 ? 00:01:00 /usr/bin/kurento-media-server

Network interfaces Up & Open

Unless configured otherwise, Kureno Media Server will open the port TCP 8888 to
receive requests and send responses to/from by means of the Kurento clients (by
means of the Kurento Protocol Open API). To verify if this port is listening,
execute the following command:

sudo netstat -putan | grep kurento

The output should be similar to the following:

tcp6 0 0 :::8888 :::* LISTEN 1270/kurento-media-server

Diagnosis Procedures

Resource consumption

Resource consumption documented in this section has been measured in two
different scenarios:

	Low load: all services running, but no stream being served.

	High load: heavy load scenario where 20 streams are requested at the
same time.

Under the above circumstances, the top command showed the following results in
the hardware described below:

	Machine Type
	Physical Machine

	CPU
	Intel(R) Core(TM) i5-3337U CPU @ 1.80GHz

	RAM
	16 GB

	HDD
	500 GB

	Operating System
	Ubuntu 14.04

Kurento Media Server gave the following result:

	
	Low Usage
	Heavy Usage

	CPU
	0.0 %
	76.9 %

	RAM
	81.92 MB
	655.36 MB

I/O flows

Use the following commands to start and stop Kurento Media Server respectively:

sudo service kurento-media-server-6.0 start
sudo service kurento-media-server-6.0 stop

Kurento Media Server logs file are stored in the folder
/var/log/kurento-media-server/. The content of this folder is as follows:

	media-server_<timestamp>.<log_number>.<kms_pid>.log: Current log for
Kurento Media Server

	media-server_error.log: Third-party errors

	logs: Folder that contains the KMS rotated logs

When KMS starts correctly, this trace is written in the log file:

[time] [0x10b2f880] [info] KurentoMediaServer main.cpp:239 main() Mediaserver started

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FIWARE-Stream-Oriented-GE documentation

FIWARE Stream Oriented Generic Enabler - Architecture Description

Copyright

Copyright © 2010-2015 by Unversidad Rey Juan Carlos [https://www.urjc.es/].
All Rights Reserved.

Legal Notice

Please check the following
Legal Notice [http://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Open_Specification_Legal_Notice_(implicit_patents_license)]
to understand the rights to use these specifications.

Overview

The Stream Oriented GE provides a framework devoted to simplify the development
of complex interactive multimedia applications through a rich family of APIs
and toolboxes. It provides a media server and a set of client APIs making
simple the development of advanced video applications for WWW and smartphone
platforms. The Stream Oriented GE features include group communications,
transcoding, recording, mixing, broadcasting and routing of audiovisual flows.
It also provides advanced media processing capabilities involving computer
vision, video indexing, augmented reality and speech analysis.

The Stream Oriented GE modular architecture makes simple the integration of
third party media processing algorithms (i.e. speech recognition, sentiment
analysis, face recognition, etc.), which can be transparently used by
application developers as the rest of built-in features.

The Stream Oriented GE’s core element is a Media Server, responsible for media
transmission, processing, loading and recording. It is implemented in low level
technologies based on GStreamer to optimize the resource consumption. It
provides the following features:

	Networked streaming protocols, including HTTP (working as client and
server), RTP and WebRTC.

	Group communications (MCUs and SFUs functionality) supporting both media
mixing and media routing/dispatching.

	Generic support for computational vision and augmented reality filters.

	Media storage supporting writing operations for WebM and MP4 and playing
in all formats supported by GStreamer.

	Automatic media transcodification between any of the codecs supported by
GStreamer including VP8, H.264, H.263, AMR, OPUS, Speex, G.711, etc.

Main Concepts

Signaling and media planes

The Stream Oriented GE, as most multimedia communication technologies out there,
is built upon two concepts that are key to all interactive communication
systems:

	Signaling Plane. Module in charge of the management of
communications, that is, it provides functions for media negotiation, QoS
parametrization, call establishment, user registration, user presence, etc.

	Media Plane. Module in charge of the media itself. So,
functionalities such as media transport, media encoding/decoding and media
processing are part of it.

Media elements and media pipelines

The Stream Oriented GE is based on two concepts that act as building blocks for
application developers:

	Media Elements:. A Media element is a functional unit performing a
specific action on a media stream. Media elements are a way of every
capability is represented as a self-contained “black box” (the media element)
to the application developer, who does not need to understand the low-level
details of the element for using it. Media elements are capable of receiving
media from other elements (through media sources) and of sending media to
other elements (through media sinks). Depending on their function, media
elements can be split into different groups:

	Input Endpoints: Media elements capable of receiving media and
injecting it into a pipeline. There are several types of input endpoints.
File input endpoints take the media from a file, Network input endpoints
take the media from the network, and Capture input endpoints are capable
of capturing the media stream directly from a camera or other kind of
hardware resource.

	Filters: Media elements in charge of transforming or analyzing
media. Hence there are filters for performing operations such as mixing,
muxing, analyzing, augmenting, etc.

	Hubs: Media Objects in charge of managing multiple media flows
in a pipeline. A Hub has several hub ports where other media elements are
connected. Depending on the Hub type, there are different ways to control
the media. For example, there are a Hub called Composite that merge all
input video streams in a unique output video stream with all inputs in a
grid.

	Output Endpoints: Media elements capable of taking a media
stream out of the pipeline. Again, there are several types of output
endpoints specialized in files, network, screen, etc.

[image: Media Element]
A media element is a functional unit providing a specific media capability,
which is exposed to application developers as a “black box”

	Media Pipeline: A Media Pipeline is a chain of media elements, where the
output stream generated by one element (source) is fed into one or more other
elements input streams (sinks). Hence, the pipeline represents a “machine”
capable of performing a sequence of operations over a stream.

[image: Media Pipeline Example]
Example of a Media Pipeline implementing an interactive multimedia
application receiving media from a WebRtcEndpoint, overlaying and image on
the detected faces and sending back the resulting stream

Agnostic media adapter

Using the Stream Oriented GE APIs, developers are able to compose the available
media elements, getting the desired pipeline. There is a challenge in this
scheme, as different media elements might require different input media formats
than the output produced by their preceding element in the chain. For example,
if we want to connect a WebRTC (VP8 encoded) or a RTP (H.264/H.263 encoded)
video stream to a face recognition media element implemented to read raw RGB
format, a transcoding is necessary.

Developers, specially during the initial phases of application development,
might want to simplify development and abstract this heterogeneity, the Stream
Oriented GE provides an automatic converter of media formats called the
agnostic media adapter. Whenever a media element’s source is connected to
another media element’s sink, our framework verifies if media adaption and
transcoding is necessary and, in case it is, it transparently incorporates the
appropriate transformations making possible the chaining of the two elements
into the resulting pipeline.

Hence, this agnostic media adapter capability fully abstracts all the
complexities of media codecs and formats. This may significantly accelerate the
development process, specially when developers are not multimedia technology
experts. However, there is a price to pay. Transcoding may be a very CPU
expensive operation. The inappropriate design of pipelines that chain media
elements in a way that unnecessarily alternate codecs (e.g. going from H.264,
to raw, to H.264 to raw again) will lead to very poor performance of
applications.

[image: Agnostic Media Adaptor]
The agnostic media capability adapts formats between heterogeneous media
elements making transparent for application developers all complexities of
media representation and encoding.

Generic Architecture

High level architecture

The conceptual representation of the GE architecture is shown in the following
figure.

[image: Stream Oriented GE Architecture]
The Stream Oriented GE architecture follows the traditional separation between
signaling and media planes.

The right side of the picture shows the application, which is in charge of the
signaling plane and contains the business logic and connectors of the
particular multimedia application being deployed. It can be build with any
programming technology like Java, Node.js, PHP, Ruby, .NET, etc. The
application can use mature technologies such as HTTP and SIP Servlets, Web
Services, database connectors, messaging services, etc. Thanks to this, this
plane provides access to the multimedia signaling protocols commonly used by
end-clients such as SIP, RESTful and raw HTTP based formats, SOAP, RMI, CORBA
or JMS. These signaling protocols are used by client side of applications to
command the creation of media sessions and to negotiate their desired
characteristics on their behalf. Hence, this is the part of the architecture,
which is in contact with application developers and, for this reason, it needs
to be designed pursuing simplicity and flexibility.

On the left side, we have the Media Server, which implements the media plane
capabilities providing access to the low-level media features: media transport,
media encoding/decoding, media transcoding, media mixing, media processing,
etc. The Media Server must be capable of managing the multimedia streams with
minimal latency and maximum throughput. Hence the Media Server must be
optimized for efficiency.

APIs and interfaces exposed by the architecture

The capabilities of the media plane (Media Server) and signaling plane
(Application) are exposed through a number of APIs, which provide increasing
abstraction levels. Following this, the role of the different APIs can be
summarized in the following way:

	Stream Oriented GE Open API: Is a network protocol exposing the Media
Server capabilities through WebSocket (read more in the
Stream Oriented Open API page).

	Java Client: Is a Java SE layer which consumes the Stream Oriented GE
Open API and exposes its capabilities through a simple-to-use modularity
based on Java POJOs representing media elements and media pipelines. This
API is abstract in the sense that all the inherent complexities of the
internal Open API workings are abstracted and developers do not need to
deal with them when creating applications. Using the Java Client only
requires adding the appropriate dependency to a maven project or to
download the corresponding jar into the application developer CLASSPATH. It
is important to remark that the Java Client is a media-plane control API.
In other words, its objective is to expose the capability of managing media
objects, but it does not provide any signaling plane capabilities.

	JavaScript Client: Is a JavaScript layer which consumes the Stream
Oriented GE Open API and exposes its capabilities to JavaScript developers.
It allow to build Node.js and browser based applications.

From an architectural perspective, application developers can use clients or the
Open API directly for creating their multimedia enabled applications. This
opens a wide spectrum of potential usage scenarios ranging from web
applications (written using the JavaScript client), desktop applications
(written using the Java Client), distributed applications (written using the
Open API), etc.

Creating applications on top of the Stream Oriented GE Architecture

The Stream Oriented GE Architecture has been specifically designed following the
architectural principles of the WWW. For this reason, creating a multimedia
applications basing on it is a similar experience to creating a web application
using any of the popular web development frameworks.

At the highest abstraction level, web applications have an architecture
comprised of three different layers:

	Presentation layer: Here we can find all the application code which is
in charge of interacting with end users so that information is represented in
a comprehensive way user input is captured. This usually consists on HTML
pages.

	Application logic: This layer is in charge of implementing the specific
functions executed by the application.

	Service layer: This layer provides capabilities used by the application
logic such as databases, communications, security, etc.

Following this parallelism, multimedia applications created using the Stream
Oriented GE also respond to the same architecture:

	Presentation layer: Is in charge of multimedia representation and
multimedia capture. It is usually based on specific build-in capabilities of
the client. For example, when creating a browser-based application, the
presentation layer will use capabilities such as the <video> tag or the
WebRTC PeerConnection and MediaStreams APIs.

	Application logic: This layer provides the specific multimedia logic. In
other words, this layer is in charge of building the appropriate pipeline (by
chaining the desired media elements) that the multimedia flows involved in
the application will need to traverse.

	Service layer: This layer provides the multimedia services that support
the application logic such as media recording, media ciphering, etc. The
Media Server (i.e. the specific media elements) is the part of the Stream
Oriented GE architecture in charge of this layer.

[image: Layered architecture of web and multimedia applications]
Applications created using the Stream Oriented GE (right) have an
equivalent architecture to standard WWW applications (left). Both types of
applications may choose to place the application logic at the client or at the
server code.

This means that developers can choose to include the code creating the specific
media pipeline required by their applications at the client side (using a
suitable client or directly with the Open API) or can place it at the server
side.

Both options are valid but each of them drives to different development styles.
Having said this, it is important to note that in the WWW developers usually
tend to maintain client side code as simple as possible, bringing most of their
application logic to the server. Reproducing this kind of development
experience is the most usual way of using this GE. That is, by locating the
multimedia application logic at the server side, so that the specific media
pipelines are created using the the client for your favorite language.

Main Interactions

Interactions from a generic perspective

A typical Stream Oriented GE application involves interactions among three main
modules:

	Client Application: which involves the native multimedia
capabilities of the client platform plus the specific client-side
application logic. It can use Clients designed to client platforms (for
example, JavaScript Client).

	Application Server: which involves an application server and the
server-side application logic. It can use Clients designed to server
platforms (for example, Java Client for Java EE and JavaScript Client for
Node.js).

	Media Server: which receives commands for creating specific
multimedia capabilities (i.e. specific pipelines adapted to the needs of
specific applications)

The interactions maintained among these modules depend on the specificities of
each application. However, in general, for most applications they can be
reduced to the following conceptual scheme:

[image: Main interactions between architectural modules]
Main interactions occur in two phases: negotiation and media exchange. Remark
that the color of the different arrows and boxes is aligned with the
architectural figures presented above, so that, for example, orange arrows show
exchanges belonging to the Open API, blue arrows show exchanges belonging to
the Thrift API, red boxes are associated to the Media Server and green boxes
with the Application Server.

Media negotiation phase

As it can be observed, at a first stage, a client (a browser in a computer, a
mobile application, etc.) issues a message requesting some kind of capability
from the Stream Oriented GE. This message is based on a JSON RPC V2.0
representation and fulfills the Open API specification. It can be generated
directly from the client application or, in case of web applications,
indirectly consuming the abstract HTML5 SDK. For instance, that request could
ask for the visualization of a given video clip.

When the Application Server receives the request, if appropriate, it will carry
out the specific server side application logic, which can include
Authentication, Authorization and Accounting (AAA), CDR generation, consuming
some type of web service, etc.

After that, the Application Server processes the request and, according to the
specific instructions programmed by the developer, commands the Media Server to
instantiate the suitable media elements and to chain them in an appropriate
media pipeline. Once the pipeline has been created successfully the server
responds accordingly and the Application Server forwards the successful
response to the client, showing it how and where the media service can be
reached.

During the above mentioned steps no media data is really exchanged. All the
interactions have the objective of negotiating the whats, hows, wheres and
whens of the media exchange. For this reason, we call it the negotiation phase.
Clearly, during this phase only signaling protocols are involved.

Media exchange phase

After that, a new phase starts devoted to producing the actual media exchange.
The client addresses a request for the media to the Media Server using the
information gathered during the negotiation phase. Following with the
video-clip visualization example mentioned above, the browser will send a GET
request to the IP address and port of the Media Server where the clip can be
obtained and, as a result, an HTTP request with the media will be received.

Following the discussion with that simple example, one may wonder why such a
complex scheme for just playing a video, when in most usual scenarios clients
just send the request to the appropriate URL of the video without requiring any
negotiation. The answer is straightforward. The Stream Oriented GE is designed
for media applications involving complex media processing. For this reason, we
need to establish a two-phase mechanism enabling a negotiation before the media
exchange. The price to pay is that simple applications, such as one just
downloading a video, also need to get through these phases. However, the
advantage is that when creating more advanced services the same simple
philosophy will hold. For example, if we want to add augmented reality or
computer vision features to that video-clip, we just need to create the
appropriate pipeline holding the desired media element during the negotiation
phase. After that, from the client perspective, the processed clip will be
received as any other video.

Specific interactions for commonly used services

Regardless of the actual type of session, all interactions follow the pattern
described in section above. However, most common services respond to one of the
following two main categories:

RTP/WebRTC

The Stream Oriented GE allows the establishment of real time multimedia session
between a peer client and the Media Server directly through the use of RTP/RTCP
or through WebRTC. In addition, the Media Server can be used to act as media
proxy for making possible the communication among different peer clients, which
are mediated by the Stream Oriented GE infrastructure. Hence, the GE can act as
a conference bridge (Multi Conference Unit), as a machine-to-machine
communication system, as a video call recording system, etc. As shown in the
picture, the client exposes its media capabilities through an SDP (Session
Description Protocol) payload encapsulated in a JSON object request. Hence, the
Application Server is able to instantiate the appropriate media element (either
RTP or WebRTC end points), and to require it to negotiate and offer a response
SDP based on its own capabilities and on the offered SDP. When the answer SDP
is obtained, it is given back to the client and the media exchange can be
started. The interactions among the different modules are summarized in the
following picture

[image: Main interactions in a WebRTC session]
Interactions taking place in a Real Time Communications (RTC) session. During
the negotiation phase, a SDP message is exchanged offering the capabilities of
the client. As a result, the Media Server generates an SDP answer that can be
used by the client for establishing the media exchange.

As with the rest of examples shown above, the application developer is able to
create the desired pipeline during the negotiation phase, so that the real time
multimedia stream is processed accordingly to the application needs. Just as an
example, imagine that we want to create a WebRTC application recording the
media received from the client and augmenting it so that if a human face is
found, a hat will be rendered on top of it. This pipeline is schematically
shown in the figure below, where we assume that the Filter element is capable
of detecting the face and adding the hat to it.

[image: Example pipeline for a WebRTC session]
During the negotiation phase, the application developer can create a pipeline
providing the desired specific functionality. For example, this pipeline uses a
WebRtcEndpoint for communicating with the client, which is connected to a
RecorderEndpoint storing the received media stream and to an augmented
reality filter, which feeds its output media stream back to the client. As a
result, the end user will receive its own image filtered (e.g. with a hat added
onto her head) and the stream will be recorded and made available for further
recovery into a repository (e.g. a file).

HTTP recorder

HTTP recording sessions are equivalent to playing sessions although, in this
case, the media goes from the client to the server using POST HTTP method. The
negotiation phase hence starts with the client requesting to upload the content
and the Application Server creating the appropriate pipeline for doing it. This
pipeline will always start with an HttpPostEndpoint element. Further elements
can be connected to that endpoint for filtering media, processing it or storing
it into a media repository. The specific interactions taking place in this type
of session are shown in the figure below

[image: Example of pipeline for an HTTP recorder]
Example of pipeline for an HTTP recorder

Basic Design Principles

The Stream Oriented GE is designed based on the following main principles:

	Separate Media and Signaling Planes. Signaling and media are two
separate planes and therefore the Stream Oriented GE is designed in a way
that applications can handle separately those facets of multimedia
processing.

	Distribution of Media and Application Services. Media Server and
applications can be collocated, escalated or distributed among different
machines. A single application can invoke the services of more than one
Media Servers. The opposite also applies, that is, a Media Server can
attend the requests of more than one application.

	Suitable for the Cloud. The Stream Oriented GE is suitable to be
integrated into cloud environments to act as a PaaS (Platform as a Service)
component.

	Media Pipelines. Chaining Media Elements via Media Pipelines is an
intuitive approach to challenge the complexity of multimedia processing.

	Application development. Developers do not need to be aware of
internal Media Server complexities, all the applications can deployed in
any technology or framework the developer like, from client to server. From
browsers to cloud services.

	End-to-end Communication Capability. The Stream Oriented GE provides
end-to-end communication capabilities so developers do not need to deal
with the complexity of transporting, encoding/decoding and rendering media
on client devices.

	Fully Processable Media Streams. The Stream Oriented GE enables not
only interactive interpersonal communications (e.g. Skype-like with
conversational call push/reception capabilities), but also human-to-machine
(e.g. Video on Demand through real-time streaming) and machine-to-machine
(e.g. remote video recording, multisensory data exchange) communications.

	Modular Processing of Media. Modularization achieved through media
elements and pipelines allows defining the media processing functionality
of an application through a “graph-oriented” language, where the
application developer is able to create the desired logic by chaining the
appropriate functionalities.

	Auditable Processing. The Stream Oriented GE is able to generate rich
and detailed information for QoS monitoring, billing and auditing.

	Seamless IMS integration. The Stream Oriented GE is designed to
support seamless integration into the IMS infrastructure of Telephony
Carriers.

	Transparent Media Adaptation Layer. The Stream Oriented GE provides a
transparent media adaptation layer to make the convergence among different
devices having different requirements in terms of screen size, power
consumption, transmission rate, etc. possible.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	FIWARE-Stream-Oriented-GE documentation

FIWARE Stream Oriented Generic Enabler - Open API Specification

The Stream Oriented API is a resource-oriented API accessed via WebSockets that
uses JSON-RPC V2.0 based representations for information exchange. An RPC call
is represented by sending a Request message to a server. The Request message
has the following members:

	jsonrpc: a string specifying the version of the JSON-RPC protocol. It must
be exactly 2.0.

	id: an unique identifier established by the client that contains a string
or number. The server must reply with the same value in the Response message.
This member is used to correlate the context between both messages.

	method: a string containing the name of the method to be invoked.

	params: a structured value that holds the parameter values to be used
during the invocation of the method.

When an RPC call is made by a client, the server replies with a response object.
In the case of a success, the response object contains the following members:

	jsonrpc: it must be exactly 2.0.

	id: it must match the value of the id member in the request object.

	result: structured value which contains the invocation result.

In the case of an error, the response object contains the following members:

	jsonrpc: it must be exactly 2.0.

	id: it must match the value of the id member in the request object.

	error: object describing the error through the following members:

	code: integer number that indicates the error type that occurred

	message: string providing a short description of the error.

	data: primitive or structured value that contains additional
information about the error. It may be omitted. The value of this member
is defined by the server.

Create

Create message requests the creation of an element of the toolbox. The parameter
type specifies the type of the object to be created. The parameter
constructorParams contains all the information needed to create the object.
Each message needs different constructorParams to create the object.

A sessionId parameter is included with the identifier of the current session.
The value of this parameter is sent by Kurento Media Server to the client in
each response. Only the first request from client to server is allowed to not
include the sessionId (because at this point is unknown for the client).

Request

A create request contains the following parameters:

	method (required, string). Value: create.

	params (required, object). Parameters for the invocation of the create
message, containing these members:

	type (required, string). Media element to be created. Allowed Values:

	WebRtcEndpoint: This Endpoint offers media streaming using
WebRTC.

	RtpEndpoint: Endpoint that provides bidirectional content
delivery capabilities with remote networked peers through RTP
protocol. It contains paired sink and source MediaPad for audio and
video.

	HttpPostEndpoint: This type of Endpoint provide
unidirectional communications. Its MediaSource are related to HTTP
POST method. It contains sink MediaPad for audio and video, which
provide access to an HTTP file upload function.

	PlayerEndpoint: It provides function to retrieve contents
from seekable sources in reliable mode (does not discard media
information) and inject them into KMS. It contains one MediaSource
for each media type detected.

	RecorderEndpoint: Provides function to store contents in
reliable mode (doesn’t discard data). It contains MediaSink pads for
audio and video.

	FaceOverlayFilter: It detects faces in a video feed. The
face is then overlaid with an image.

	ZBarFilter: This Filter detects QR and bar codes in a
video feed. When a code is found, the filter raises a CodeFound.

	GStreamerFilter: This is a generic Filter interface, that
creates GStreamer filters in the media server.

	Composite: A Hub that mixes the audio stream of its
connected sources and constructs a grid with the video streams of its
connected sources into its sink.

	Dispatcher: A Hub that allows routing between arbitrary
port pairs.

	DispatcherOneToMany: A Hub that sends a given source to
all the connected sinks.

	constructorParams (required, object). Additional parameters. As
minimum, the identifier of the media pipeline should be included here.

	sessionId (required, string). Session identifier.

The following example shows a Request message requesting the creation of an
object of the type PlayerEndpoint within the pipeline 6829986 and the
parameter uri:http://host/app/video.mp4 in the session
c93e5bf0-4fd0-4888-9411-765ff5d89b93:

	Body (application/json)

{
 "jsonrpc": "2.0",
 "id": 1,
 "method": "create",
 "params": {
 "type": "PlayerEndPoint",
 "constructorParams": {
 "pipeline": "6829986",
 "uri": "http://host/app/video.mp4"
 },
 "sessionId": "c93e5bf0-4fd0-4888-9411-765ff5d89b93"
 }
}

Response

The response message contains the id of the new object in the field value. This
message id has to be used in other requests of the protocol (as we will
describe later). As stated before, the sessionId is also returned in each
response.

A create response contains the following parameters:

	result (required, object). Result of the create invocation:

	value (required, number). Identifier of the created media element.

	sessionId (required, string). Session identifier.

The following example shows a typical response to a create message:

	Body (application/json)

{
 "jsonrpc": "2.0",
 "id": 1,
 "result": {
 "value": "442352747",
 "sessionId": "c93e5bf0-4fd0-4888-9411-765ff5d89b93"
 }
}

Invoke

Invoke message requests the invocation of an operation in the specified object.
The parameter object indicates the id of the object in which the operation will
be invoked. The parameter operation carries the name of the operation to be
executed. Finally, the parameter operationParams has the parameters needed to
execute the operation. The object specified has to understand the

Request

An invoke request contains the following parameters:

	method (required, string). Value is invoke.

	params (required, object)

	object (required, number). Identifier of the source media element.

	operation (required, string). Operation invoked. Allowed
Values:

	connect. Connect two media elements.

	play. Start the play of a media (PlayerEndPoint).

	record. Start the record of a media
(RecorderEndPoint).

	operationParams (optional, object).

	sink (required, number). Identifier of the sink media
element.

	sessionId (required, string). Session identifier.

The following example shows a Request message requesting the invocation of the
operation connect on the object 442352747 with parameter sink 6829986. The
sessionId is also included as is mandatory for all requests in the session
(except the first one):

	Body (application/json)

{
 "jsonrpc": "2.0",
 "id": 2,
 "method": "invoke",
 "params": {
 "object": "442352747", "operation": "connect",
 "operationParams": {
 "sink": "6829986"
 },
 "sessionId": "c93e5bf0-4fd0-4888-9411-765ff5d89b93"
 }
}

Response

The response message contains the value returned while executing the operation
invoked in the object or nothing if the operation doesn’t return any value.

An invoke response contains the following parameters:

	
	result (required, object)

	
	sessionId (required, string). Session identifier.

The following example shows a typical response while invoking the operation
connect (that doesn’t return anything):

	Body (application/json)

{
 "jsonrpc": "2.0",
 "result": {
 "sessionId": "c93e5bf0-4fd0-4888-9411-765ff5d89b93"
 },
 "id": 2
}

Release

Release message requests the release of the specified object. The parameter
object indicates the id of the object to be released:

Request

A release request contains the following parameters:

	method (required, string). Value is release.

	params (required, object).

	object (required, number). Identifier of the media element to be
released.

	sessionId (required, string). Session identifier.

	Body (application/json)

{
 "jsonrpc": "2.0",
 "id": 3,
 "method": "release",
 "params": {
 "object": "442352747",
 "sessionId": "c93e5bf0-4fd0-4888-9411-765ff5d89b93"
 }
}

Response

A release response contains the following parameters:

	result (required, object)

	sessionId (required, string). Session identifier.

The response message only contains the sessionID. The following example shows
the typical response of a release request:

	Body (application/json)

{
 "jsonrpc":"2.0",
 "id":3,
 "result": {
 "sessionId":"c93e5bf0-4fd0-4888-9411-765ff5d89b93"
 }
}

Subscribe

Subscribe message requests the subscription to a certain kind of events in the
specified object. The parameter object indicates the id of the object to
subscribe for events. The parameter type specifies the type of the events. If a
client is subscribed for a certain type of events in an object, each time an
event is fired in this object, a request with method onEvent is sent from
Kurento Media Server to the client. This kind of request is described few
sections later.

Request

A subscribe reqest contains the following parameters:

	method (required, string). Value is subscribe.

	params (required, object). Parameters for the invocation of the create
message, containing these members:

	constructorParams (required, object). Additional parameters. As
minimum, the identifier of the media pipeline should be included here.

	type (required, string). Media event to be subscribed.
Allowed Values:

	CodeFound Event: raised by a ZBarFilter when a
code is found in the data being streamed.

	ConnectionStateChanged: Indicates that the state
of the connection has changed.

	ElementConnected: Indicates that an element has
been connected to other.

	ElementDisconnected: Indicates that an element has
been disconnected.

	EndOfStream: Event raised when the stream that the
element sends out is finished.

	Error: An error related to the MediaObject has
occurred.

	MediaSessionStarted: Event raised when a session
starts. This event has no data.

	MediaSessionTerminated: Event raised when a
session is terminated. This event has no data.

	MediaStateChanged: Indicates that the state of the
media has changed.

	ObjectCreated: Indicates that an object has been
created on the mediaserver.

	ObjectDestroyed: Indicates that an object has been
destroyed on the mediaserver.

	OnIceCandidate: Notify of a new gathered local
candidate.

	OnIceComponentStateChanged: Notify about the
change of an ICE component state.

	OnIceGatheringDone: Notify that all candidates
have been gathered.

	sessionId (required, string). Session identifier.

The following example shows a request message requesting the subscription of the
event type EndOfStream on the object 311861480. The sessionId is also
included:

	Body (application/json)

{
 "jsonrpc":"2.0",
 "id":4,
 "method":"subscribe",
 "params":{
 "object":"311861480",
 "type":"EndOfStream",
 "sessionId":"c93e5bf0-4fd0-4888-9411-765ff5d89b93"
 }
}

Response

The response message contains the subscription identifier. This value can be
used later to remove this subscription.

A subscribe response contains the following parameters:

	result (required, object). Result of the subscription invocation. This
object contains the following members:

	value (required, number). Identifier of the media event.
* sessionId (required, string). Session identifier.

The following example shows the response of subscription request. The value
attribute contains the subscription id:

	Body (application/json)

{
 "jsonrpc":"2.0",
 "id":4,
 "result": {
 "value":"353be312-b7f1-4768-9117-5c2f5a087429",
 "sessionId":"c93e5bf0-4fd0-4888-9411-765ff5d89b93"
 }
}

Unsubscribe

Unsubscribe message requests the cancellation of a previous event subscription.
The parameter subscription contains the subscription id received from the
server when the subscription was created.

Request

An unsubscribe request contains the following parameters:

	method (required, string). Value is unsubscribe.

	params (required, object).

	object (required, string). Media element in which the subscription
is placed.

	subscription (required, number). Subscription identifier.

	sessionId (required, string). Session identifier.

The following example shows a Request message requesting the cancellation of the
subscription 353be312-b7f1-4768-9117-5c2f5a087429:

	Body (application/json)

{
 "jsonrpc":"2.0",
 "id":5,
 "method":"unsubscribe",
 "params": {
 "subscription":"353be312-b7f1-4768-9117-5c2f5a087429",
 "sessionId":"c93e5bf0-4fd0-4888-9411-765ff5d89b93"
 }
}

Response

The response message only contains the sessionID. The following example shows
the typical response of an unsubscription request:

An unsubscribe response contains the following parameters:

	result (required, object)

	sessionId (required, string). Session identifier.

For example:

	Body (application/json)

{
 "jsonrpc":"2.0",
 "id":5,
 "result": {
 "sessionId":"c93e5bf0-4fd0-4888-9411-765ff5d89b93"
 }
}

OnEvent

When a client is subscribed to a type of events in an object, the server sends
an onEvent request each time an event of that type is fired in the object. This
is possible because the Stream Oriented open API is implemented with websockets
and there is a full duplex channel between client and server. The request that
server send to client has all the information about the event:

	data: Information about this specific of this type of event.

	source: the object source of the event.

	type: The type of the event.

	subscription: subscription id for which the event is fired.

Request

An OnEvent request contains the following parameters:

	method (required, string). Value is onEvent.

	params (required, object).

	value (required, object)

	data (required, object)

	object (optional, string). Media element target.

	source (optional, string). Media element source.

	tags (optional, string). Media element metadata.

	timestamp (optional, number). Media server time
and date.

	object (required, object).Media element identifier.

	type (required, string). Same type identifier described on
subscribe message (i.e.: CodeFound, ConnectionStateChanged,
ElementConnected, ElementDisconnected, EndOfStream, Error,
MediaSessionStarted, MediaSessionTerminated, MediaStateChanged,
ObjectCreated, ObjectDestroyed, OnIceCandidate,
OnIceComponentStateChanged, OnIceGatheringDone)

The following example shows a notification sent for server to client to notify
an event of type EndOfStream in the object 311861480 with subscription
353be312-b7f1-4768-9117-5c2f5a087429:

	Body (application/json)

{
 "jsonrpc": "2.0",
 "id": 6,
 "method": "onEvent",
 "params": {
 "value": {
 "data":{
 "source":"311861480",
 "type":"EndOfStream"
 },
 "object":"311861480",
 "subscription":"353be312-b7f1-4768-9117-5c2f5a087429",
 "type":"EndOfStream",
 },
 "sessionId":"4f5255d5-5695-4e1c-aa2b-722e82db5260"
 }
}

Response

There is no response to the onEvent message.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	FIWARE-Stream-Oriented-GE documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 _images/Magicmirror-screenshot.png
e o

Tutorial 2: Magic Mirror

Local stream Remote sream

<]

_images/Generic_interactions.png
Client
Application
Media
o negotiation
phase
<
Media
e exchange
phase

Content Request

Application
Server

(JSON)

Content Answer

Specific application
logic at the
server-side

Commands requesting
the creation of a pipeline

<

(JSON)

Media
pipeline
creation

_static/up.png

_images/Media_pipeline_example.png
WebRtcEndpoint FaceOverlayFilter

_static/comment.png

build/langdoc/kurento-client/README.html

 Navigation

 		
 index

 		FIWARE-Stream-Oriented-GE documentation »

 ![][KurentoImage] [http://kurento.org]

Copyright © 2013 Kurento. Licensed under LGPL License [http://www.gnu.org/licenses/lgpl-2.1.html].

kurento-client

The Kurento Client project contains the Kurento Java Client.

What is Kurento

Kurento provides an open platform for video processing and streaming
based on standards.

This platform has several APIs and components which provide solutions
to the requirements of multimedia content application developers.
These include:

		Kurento Media Server (KMS). A full featured media server providing
the capability to create and manage dynamic multimedia pipelines.

		Kurento Control Server (KCS). Signaling server for KMS. It provides
extra capabilities such as security, load balance, and so on.

		Kurento Clients. Libraries to create applications with media
capabilities. Kurento provides libraries for Java, browser JavaScript,
and Node.js.

Downloads

To download binary releases of Kurento components visit http://kurento.org

Source

The source code of this project can be cloned from the GitHub Repository [https://github.com/Kurento/kurento-java].
Code for other Kurento projects can be found in the GitHub Kurento Group [https://github.com/kurento].

News and Website

Information about Kurento can be found on our website [http://kurento.org].
Follow us on Twitter @kurentoms [http://twitter.com/kurentoms].

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_images/Media_element.png

_static/down.png

_images/RTC_session.png
Client Application
Application Server
| This is my SDP Specific application
(JSON) logic at the
server-side
Media
negotiation .

o phase Create pipeline with > p':’;:?i:e
appropriate RTC end point | . cation

‘ This is the answer SDP
(JSON)

Media
o exchange Multimedia RTC exchange with media server

phase

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/plus.png

_static/minus.png

_static/comment-close.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		FIWARE-Stream-Oriented-GE documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

README.html

 Navigation

 		
 index

 		FIWARE-Stream-Oriented-GE documentation »

 ![][KurentoImage] [http://kurento.org]

Copyright © 2013-2016 Kurento [http://kurento.org]. Licensed under LGPL v2.1 License [http://www.gnu.org/licenses/lgpl-2.1.html].

doc-kurento

Kurento Documentation. Made with Sphinx [http://sphinx-doc.org/] and Read-the-docs [http://read-the-docs.readthedocs.org/] theme.

What is Kurento

Kurento is an open source software project providing a platform suitable
for creating modular applications with advanced real-time communication
capabilities. For knowing more about Kurento, please visit the Kurento
project website: http://www.kurento.org.

Kurento is part of FIWARE [http://www.fiware.org]. For further information on the relationship of
FIWARE and Kurento check the Kurento FIWARE Catalog Entry [http://catalogue.fiware.org/enablers/stream-oriented-kurento]

Kurento is part of the NUBOMEDIA [http://www.nubomedia.eu] research initiative.

Documentation

The Kurento project provides detailed documentation [http://www.kurento.org/documentation] including tutorials,
installation and development guides. A simplified version of the documentation
can be found on readthedocs.org [http://kurento.readthedocs.org/]. The Open API specification [http://kurento.github.io/doc-kurento/] a.k.a. Kurento
Protocol is also available on apiary.io [http://docs.streamoriented.apiary.io/].

Source

Code for other Kurento projects can be found in the GitHub Kurento Group [https://github.com/kurento].

News and Website

Check the Kurento blog [http://www.kurento.org/blog]
Follow us on Twitter @kurentoms [http://twitter.com/kurentoms].

Issue tracker

Issues and bug reports should be posted to the GitHub Kurento bugtracker [https://github.com/Kurento/bugtracker/issues]

Licensing and distribution

Software associated to Kurento is provided as open source under GNU Library or
“Lesser” General Public License, version 2.1 (LGPL-2.1). Please check the
specific terms and conditions linked to this open source license at
http://opensource.org/licenses/LGPL-2.1. Please note that software derived as a
result of modifying the source code of Kurento software in order to fix a bug
or incorporate enhancements is considered a derivative work of the product.
Software that merely uses or aggregates (i.e. links to) an otherwise unmodified
version of existing software is not considered a derivative work.

Contribution policy

You can contribute to the Kurento community through bug-reports, bug-fixes, new
code or new documentation. For contributing to the Kurento community, drop a
post to the Kurento Public Mailing List [https://groups.google.com/forum/#!forum/kurento] providing full information about your
contribution and its value. In your contributions, you must comply with the
following guidelines

		You must specify the specific contents of your contribution either through a
detailed bug description, through a pull-request or through a patch.

		You must specify the licensing restrictions of the code you contribute.

		For newly created code to be incorporated in the Kurento code-base, you must
accept Kurento to own the code copyright, so that its open source nature is
guaranteed.

		You must justify appropriately the need and value of your contribution. The
Kurento project has no obligations in relation to accepting contributions
from third parties.

		The Kurento project leaders have the right of asking for further
explanations, tests or validations of any code contributed to the community
before it being incorporated into the Kurento code-base. You must be ready to
addressing all these kind of concerns before having your code approved.

Support

The Kurento project provides community support through the Kurento Public
Mailing List [https://groups.google.com/forum/#!forum/kurento] and through StackOverflow [http://stackoverflow.com/search?q=kurento] using the tags kurento and
fiware-kurento.

Before asking for support, please read first the Kurento Netiquette Guidelines [http://www.kurento.org/blog/kurento-netiquette-guidelines]

 © Copyright .
 Created using Sphinx 1.3.1.

_images/RTC_session_pipeline.png
WebRtcEndPoint

Client

Multimedia RTC exchange
with media server

Media
Repository

RecorderEndPoint

index.html

 Navigation

 		
 index

 		FIWARE-Stream-Oriented-GE documentation »

FIWARE Stream Oriented Generic Enabler - Overview

What you get

The Stream Oriented Generic Enabler (GE) provides a framework devoted to
simplify the development of complex interactive multimedia applications through
a rich family of APIs and toolboxes. It provides a media server and a set of
client APIs making simple the development of advanced video applications for
WWW and smartphone platforms. The Stream Oriented GE features include group
communications, transcoding, recording, mixing, broadcasting and routing of
audiovisual flows. It also provides advanced media processing capabilities
involving computer vision, video indexing, augmented reality and speech
analysis.

The Stream Oriented GE modular architecture makes simple the integration of
third party media processing algorithms (i.e. speech recognition, sentiment
analysis, face recognition, etc.), which can be transparently used by
application developers as the rest of built-in features.

The Stream Oriented GE’s core element is a Media Server, responsible for media
transmission, processing, loading and recording. It is implemented in low level
technologies based on GStreamer to optimize the resource consumption. It
provides the following features:

		Networked streaming protocols, including HTTP (working as client and
server), RTP and WebRTC.

		Group communications (MCUs and SFUs functionality) supporting both media
mixing and media routing/dispatching.

		Generic support for computational vision and augmented reality filters. -
Media storage supporting writing operations for WebM and MP4 and playing in
all formats supported by GStreamer.

		Automatic media transcodification between any of the codecs supported by
GStreamer including VP8, H.264, H.263, AMR, OPUS, Speex, G.711, etc.

Documentation

		Programmers Guide
		Introduction

		Programmer Guide

		Installation and Administration Guide
		Introduction

		Installation

		Configuration

		Sanity check Procedures

		Diagnosis Procedures

		Architecture Description
		Copyright

		Legal Notice

		Overview

		Main Concepts

		Generic Architecture

		Creating applications on top of the Stream Oriented GE Architecture

		Main Interactions

		Open API Specification
		Create

		Invoke

		Release

		Subscribe

		Unsubscribe

		OnEvent

 © Copyright .
 Created using Sphinx 1.3.1.

doc/README.html

 Navigation

 		
 index

 		FIWARE-Stream-Oriented-GE documentation »

FIWARE Stream Oriented Generic Enabler - Overview

What you get

The Stream Oriented Generic Enabler (GE) provides a framework devoted to
simplify the development of complex interactive multimedia applications through
a rich family of APIs and toolboxes. It provides a media server and a set of
client APIs making simple the development of advanced video applications for
WWW and smartphone platforms. The Stream Oriented GE features include group
communications, transcoding, recording, mixing, broadcasting and routing of
audiovisual flows. It also provides advanced media processing capabilities
involving computer vision, video indexing, augmented reality and speech
analysis.

The Stream Oriented GE modular architecture makes simple the integration of
third party media processing algorithms (i.e. speech recognition, sentiment
analysis, face recognition, etc.), which can be transparently used by
application developers as the rest of built-in features.

The Stream Oriented GE’s core element is a Media Server, responsible for media
transmission, processing, loading and recording. It is implemented in low level
technologies based on GStreamer to optimize the resource consumption. It
provides the following features:

		Networked streaming protocols, including HTTP (working as client and
server), RTP and WebRTC.

		Group communications (MCUs and SFUs functionality) supporting both media
mixing and media routing/dispatching.

		Generic support for computational vision and augmented reality filters. -
Media storage supporting writing operations for WebM and MP4 and playing in
all formats supported by GStreamer.

		Automatic media transcodification between any of the codecs supported by
GStreamer including VP8, H.264, H.263, AMR, OPUS, Speex, G.711, etc.

Documentation

 © Copyright .
 Created using Sphinx 1.3.1.

_images/Applications_Layered_Architecture.png
Client-side application code

Web Application Architecture = Multimedia Application Architecture

Application Logic layer Application Logic layer

Databases, etc. Media Server capabilities

Server-side application code

_images/Stream-oriented_GE.png
Client side applications
(Browser, Mobile app...)

£0 ET
ik Iz z ®

] 38 Pl w »

EE =3 H HH H B
i I 2 ENEN el 3
s g a HHEE
= = 1 o3 & »
2=z Media 13 3 HHAEE a
£a Repository D b4 ZHEN S E
8k 2e : 4 3

Input Output
Endpoint Endpoint

Application
oy

OpenAPI

Media Server Application Server

_images/AgnosticMediaAdaptor.png
Media Element

An agnostic media adaptor
is “hidden” behind every
connection making
compatible element
formats transparently

Media Element

_images/Magicmirror-pipeline.png
Kurento Media Server

Media Pipeline

WebRtcndgoint R eoiesh

_images/Recorder_session.png
Client Application
Application Server

(JSON) logic at the
server-side
Media
negotiation .
o h Create pipeline with > Med.'a
phase . pipeline
Recorder and HTTP end points| . aation
4 Do it in this URL 4
(JSON)
POST/PUT to URL
Media Media upload to media server
e exchange
phase (HTTP response)
‘ e

