

FIWARE Stream Oriented Generic Enabler - Overview

The Stream Oriented Generic Enabler (GE) provides a framework devoted to
simplify the development of complex interactive multimedia applications through
a rich family of APIs and toolboxes. It provides a media server and a set of
client APIs making simple the development of advanced video applications for
WWW and smartphone platforms. The Stream Oriented GE features include group
communications, transcoding, recording, mixing, broadcasting and routing of
audiovisual flows. It also provides advanced media processing capabilities
involving computer vision, video indexing, augmented reality and speech
analysis.

The Stream Oriented GE modular architecture makes simple the integration of
third party media processing algorithms (i.e. speech recognition, sentiment
analysis, face recognition, etc.), which can be transparently used by
application developers as the rest of built-in features.

The Stream Oriented GE’s core element is a Media Server, responsible for media
transmission, processing, loading and recording. It is implemented in low level
technologies based on GStreamer to optimize the resource consumption. It
provides the following features:

	Networked streaming protocols, including HTTP (working as client and
server), RTP and WebRTC.

	Group communications (MCUs and SFUs functionality) supporting both media
mixing and media routing/dispatching.

	Generic support for computational vision and augmented reality filters. -
Media storage supporting writing operations for WebM and MP4 and playing in
all formats supported by GStreamer.

	Automatic media transcodification between any of the codecs supported by
GStreamer including VP8, H.264, H.263, AMR, OPUS, Speex, G.711, etc.

Why Using Kurento in a “Smart Solution”?

The Stream-oriented GE provides a suitable structure to multimedia
information, so it can be inserted into the context in an homogeneous
way and can be consumed by client application front-ends or application
backends just like any other context information.

Information can be extracted to convert media devices like cameras into
IoT devices using the Kurento real-time media Stream processing GE.
Context information can be generated as a result of the media streams
analysis or the reception of context data to take decisions in the way
the media is processed.

KURENTO QUICK START GUIDE

Welcome to the FIWARE Stream GE: Kurento! Here is what you need to do to start working with Kurento.

	1. Install KMS and “Built-in modules*”

	The installation guide explains different
ways in which Kurento can be installed and how to install any
built-in modules you would need.

	2. Configure KMS

	KMS is able to run as-is after a normal installation. However, there
are several parameters that you might want to tune in the
configuration
files [https://doc-kurento.readthedocs.io/en/stable/user/configuration.html].

	3. Install and configure Orion

	You want to make a Smart Solution, so you need to manage the context
so you would want to use Orion Context Broker. Check the Orion
Context Broker Installation & Administration
Guide [https://fiware-orion.readthedocs.io/en/master/admin/index.html].

	4. Write an Application

	Write an application that queries the Kurento
API [https://doc-kurento.readthedocs.io/en/stable/features/kurento_api.html]
to make use of the capabilities offered by KMS. The easiest way of
doing this is to build on one of the provided Kurento
Clients [https://doc-kurento.readthedocs.io/en/stable/features/kurento_client.html]. And integrate it with Orion Context Broker.
In general, you can use any programming language to write your
application, as long as it speaks the Kurento
Protocol [https://doc-kurento.readthedocs.io/en/stable/features/kurento_protocol.html] and it’s able to use the REST API of Orion.
Have a look at the
features [https://doc-kurento.readthedocs.io/en/stable/user/features.html]
offered by Kurento, and follow any of the multiple
tutorials [https://doc-kurento.readthedocs.io/en/stable/user/tutorials.html]
that explain how to build basic applications.

	5. Ask for help

	If you face any issue with Kurento itself or have difficulties
configuring the plethora of mechanisms that form part of WebRTC,
don’t hesitate to ask for
help [https://doc-kurento.readthedocs.io/en/stable/user/support.html]
to the Kurento community of users.

	6. Enjoy!

	Kurento is a project that aims to bring the latest innovations closer
to the people, and help connect them together. Make a great
application with it, and let us know! We will be more than happy to
find out about who is using Kurento and what is being built with it
:-)

* built-in modules are extra modules developed by the Kurento
team to enhance the basic capabilities of Kurento Media Server.

FIWARE Stream Oriented Generic Enabler - Installation and Administration Guide

This guide describes how to install the Stream-Oriented GE - Kurento.
Kurento’s core element is the Kurento Media Server (KMS),
responsible for media transmission, processing, loading and recording.
It is implemented in low level technologies based on GStreamer to
optimize the resource consumption.

	Introduction
	Requirements

	Installation
	KMS

	Built-in modules

	Running Kurento from a Docker container

	Configuration
	STUN and TURN Configuration

	Debug Logging

	Introduction
- Requirements

	Installation

	KMS

	Built-in modules

	Running Kurento from a Docker
container

Introduction

KMS has explicit support for two Long-Term Support (LTS) distributions
of Ubuntu: Ubuntu 14.04 (Trusty) and Ubuntu 16.04 (Xenial). Only
the 64-bits editions are supported.

For other OS and versions check Running Kurento from a Docker
container

Requirements

To guarantee the right working of the enabler RAM memory and HDD size
should be at least:

	4 GB RAM

	16 GB HDD (this figure is not taking into account that multimedia
streams could be stored in the same machine. If so, HDD size must be
increased accordingly).

Installation

KMS

Currently, the main development environment for KMS is Ubuntu 16.04
(Xenial), so if you are in doubt, this is the preferred Ubuntu
distribution to choose. However, all features and bug fixes are still
being backported and tested on Ubuntu 14.04 (Trusty), so you can
continue running this version if required.

	Define what version of Ubuntu is installed in your system. Open a
terminal and copy only one of these commands:

KMS for Ubuntu 14.04 (Trusty)
DISTRO="trusty"

KMS for Ubuntu 16.04 (Xenial)
DISTRO="xenial"

	Add the Kurento repository to your system configuration. Run these
two commands in the same terminal you used in the previous step:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 5AFA7A83

sudo tee "/etc/apt/sources.list.d/kurento.list" >/dev/null <<EOF
Kurento Media Server - Release packages
deb [arch=amd64] http://ubuntu.openvidu.io/6.7.1 $DISTRO kms6
EOF

	Install KMS:

sudo apt-get update
sudo apt-get install kurento-media-server

This will install the KMS release version that was specified in the
previous commands.

The server includes service files which integrate with the Ubuntu init
system, so you can use the following commands to start and stop it:

sudo service kurento-media-server start
sudo service kurento-media-server stop

To verify that KMS is up and running, use this command and look for the
kurento-media-serverprocess:

ps -ef | grep kurento-media-server
> nobody 1270 1 0 08:52 ? 00:01:00 /usr/bin/kurento-media-server

Unless configured otherwise, KMS will open the port 8888 to receive
requests and send responses by means of the Kurento
Protocol [https://doc-kurento.readthedocs.io/en/stable/features/kurento_protocol.html].
Use this command to verify that this port is listening for incoming
packets:

sudo netstat -tupan | grep kurento

> tcp6 0 0 :::8888 :::* LISTEN 1270/kurento-media-server

Built-in modules

Built-in modules are extra modules developed by the Kurento team to
enhance the basic capabilities of Kurento Media Server. So far, there
are four built-in modules, that are installed as follows:

	kms-pointerdetector: Filter that detects pointers in video
streams, based on color tracking.

sudo apt-get install kms-pointerdetector

	kms-chroma: Filter that takes a color range in the top layer and
makes it transparent, revealing another image behind.

sudo apt-get install kms-chroma

	kms-crowddetector: Filter that detects people agglomeration in
video streams.

sudo apt-get install kms-crowddetector

	kms-platedetector: Filter that detects vehicle plates in video
streams.

sudo apt-get install kms-platedetector

Running Kurento from a Docker container

Starting a Kurento media server instance is easy. Kurento media server
exposes port 8888 for client access. So, assuming you want to map port
8888 in the instance to local port 8888, you can start kurento media
server with:

Xenial
$ docker run -d --name kms -p 8888:8888 kurento/kurento-media-server:xenial-latest
Trusty
$ docker run -d --name kms -p 8888:8888 kurento/kurento-media-server:trusty-latest

To check that kurento media server is ready and listening, issue the
following command (you need to have curl installed on your system):

$ curl -i -N -H "Connection: Upgrade" -H "Upgrade: websocket" -H "Host: 127.0.0.1:8888" -H "Origin: 127.0.0.1" http://127.0.0.1:8888/kurento

You will get something like:

HTTP/1.1 500 Internal Server Error
Server: WebSocket++/0.7.0

Don’t worry about the second line (500 Internal Server Error). It’s
ok, because we are not talking the protocol Kurento media server
expects, we are just checking that the server is up and listening for
connections.

Configuration

Kurento works by orchestrating a broad set of technologies that must be
made to work together. Some of these technologies can accept different
configuration parameters that Kurento makes available through several
configuration files:

	/etc/kurento/kurento.conf.json: The main configuration file.
Provides settings for the behavior of Kurento Media Server itself.

	/etc/kurento/modules/kurento/MediaElement.conf.ini: Generic
parameters for all kinds of MediaElement.

	/etc/kurento/modules/kurento/SdpEndpoint.conf.ini: Audio/video
parameters for SdpEndpoints (i.e. WebRtcEndpointand
RtpEndpoint).

	/etc/kurento/modules/kurento/WebRtcEndpoint.conf.ini: Specific
parameters for WebRtcEndpoint.

	/etc/kurento/modules/kurento/HttpEndpoint.conf.ini: Specific
parameters for HttpEndpoint.

	/etc/default/kurento-media-server: This file is loaded by the
system’s service init files. Defines some environment variables,
which have an effect on features such as the Debug Logging, or the
Kernel Dump files that are generated when a crash happens.

STUN and TURN Configuration

If Kurento Media Server is located behind a NAT you need to use a
STUN [https://en.wikipedia.org/wiki/STUN] or
TURN [https://en.wikipedia.org/wiki/Traversal_Using_Relays_around_NAT]
in order to achieve NAT
traversal [https://en.wikipedia.org/wiki/NAT_traversal]. In most of
cases, a STUN server will do the trick. A TURN server is only necessary
when the NAT is symmetric.

The connection of these server is configured in the WebRtcEndpoint
configuration file:
/etc/kurento/modules/kurento/WebRtcEndpoint.conf.ini

STUN Configuration

For configuring the STUN Server in Kurento you must (uncomment and)
set the following parameters in the WebRtcEndPoint configuration file:

stunServerAddress=<stun_ip_address>
stunServerPort=<stun_port>

The parameter stunServerAddress should be an IP address (not domain
name).

There is plenty of public STUN servers available, for example:

173.194.66.127:19302
173.194.71.127:19302
74.125.200.127:19302
74.125.204.127:19302
173.194.72.127:19302
74.125.23.127:3478
77.72.174.163:3478
77.72.174.165:3478
77.72.174.167:3478
77.72.174.161:3478
208.97.25.20:3478
62.71.2.168:3478
212.227.67.194:3478
212.227.67.195:3478
107.23.150.92:3478
77.72.169.155:3478
77.72.169.156:3478
77.72.169.164:3478
77.72.169.166:3478
77.72.174.162:3478
77.72.174.164:3478
77.72.174.166:3478
77.72.174.160:3478
54.172.47.69:3478

TURN Configuration

For configuring the STUN Server in Kurento you must (uncomment and)
set the following parameter in the WebRtcEndPoint configuration file:

turnURL=user:password@address:port

As before, TURN address should be an IP address (not domain name).

Remarks

	Note that it is somewhat easy to find free STUN servers available on
the net, because their functionality is pretty limited and it is not
costly to keep them working for free. However, this doesn’t happen
with TURN servers, which act as a media proxy between peers and thus
the cost of maintaining one is much higher. It is rare to find a TURN
server which works for free while offering good performance. Usually,
each user opts to maintain their own private TURN server instances.

	Coturn [http://coturn.net/] is an open source implementation of a
TURN/STUN server. In the
FAQ [https://doc-kurento.readthedocs.io/en/stable/user/faq.html]
section there is a description about how to install and configure it.

	In order to check the availability of either TURN and STUN servers
you can check here:
https://webrtc.github.io/samples/src/content/peerconnection/trickle-ice/

Debug Logging

Kurento Media Server generates log files that are stored in
/var/log/kurento-media-server/. The content of this folder is as
follows:

	media-server_<timestamp>.<log_number>.<kms_pid>.log: Output log
of a currently running instance of KMS.

	media-server_error.log: Errors logged by third-party libraries.

	logs: Folder that contains older KMS logs. The logs in this
folder are rotated, so they don’t fill up all the space available in
the disk.

Each line in a log produced by KMS has a fixed structure:

[timestamp] [pid] [memory] [level] [component] [filename:loc] [method] [message]

	[timestamp]: Date and time of the logging message (e.g.
2017-12-31 23:59:59,493295).

	[pid]: Process Identifier of kurento-media-sever (e.g.
17521).

	[memory]: Memory address in which the kurento-media-sever
component is running (e.g. 0x00007fd59f2a78c0).

	[level]: Logging level. This value typically will be INFO or
DEBUG. If unexpected error situations happen, the WARN and
ERROR levels will contain information about the problem.

	[component]: Name of the component that generated the log line.
E.g. KurentoModuleManager, webrtcendpoint, or qtmux, among
others.

	[filename:loc]: Source code file name (e.g. main.cpp) followed
by the line of code number.

	[method]: Name of the function in which the log message was
generated (e.g. loadModule(), doGarbageCollection(), etc).

	[message]: Specific log information.

For example, when KMS starts correctly, this trace is written in the log
file:

[timestamp] [pid] [memory] info KurentoMediaServer main.cpp:255 main() Kurento Media Server started

KMS Logging levels and components

Each different component of KMS is able to generate its own logging
messages. Besides that, each individual logging message has a severity
level, which defines how critical (or superfluous) the message is.

These are the different message levels, as defined by the GStreamer
logging
library [https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/gst-running.html]:

	(1) ERROR: Logs all fatal errors. These are errors that do not
allow the core or elements to perform the requested action. The
application can still recover if programmed to handle the conditions
that triggered the error.

	(2) WARNING: Logs all warnings. Typically these are non-fatal,
but user-visible problems that are expected to happen.

	(3) FIXME: Logs all “fixme” messages. Fixme messages are messages
that indicate that something in the executed code path is not fully
implemented or handled yet. The purpose of this message is to make it
easier to spot incomplete/unfinished pieces of code when reading the
debug log.

	(4) INFO: Logs all informational messages. These are typically
used for events in the system that happen only once, or are
important and rare enough to be logged at this level.

	(5) DEBUG: Logs all debug messages. These are general debug
messages for events that happen only a limited number of times
during an object’s lifetime; these include setup, teardown, change of
parameters, etc.

	(6) LOG: Logs all log messages. These are messages for events
that happen repeatedly during an object’s lifetime; these include
streaming and steady-state conditions.

	(7) TRACE: Logs all trace messages. These messages for events
that happen repeatedly during an object’s lifetime such as the
ref/unref cycles.

	(8) MEMDUMP: Log all memory dump messages. Memory dump messages
are used to log (small) chunks of data as memory dumps in the log.
They will be displayed as hexdump with ASCII characters.

Logging categories and levels can be set by two methods:

	Use the specific command-line argument while launching KMS. For
example, run:

/usr/bin/kurento-media-server \
 --gst-debug-level=3 \
 --gst-debug=Kurento*:4,kms*:4

	Use the environment variable GST_DEBUG. For example, run:

export GST_DEBUG="3,Kurento*:4,kms*:4"
/usr/bin/kurento-media-server

Suggested levels

Here are some tips on what logging components and levels could be most
useful depending on what is the issue to be analyzed. They are given in
the environment variable form, so they can be copied directly into the
KMS configuration file, /etc/default/kurento-media-server:

	Default suggested levels:

export GST_DEBUG="3,Kurento*:4,kms*:4"

	COMEDIA port discovery:

export GST_DEBUG="3,rtpendpoint:4"

	ICE candidate gathering:

export GST_DEBUG="3,kmsiceniceagent:5,kmswebrtcsession:5,webrtcendpoint:4"

Notes:

	kmsiceniceagent shows messages from the Nice Agent (handling of
candidates).

	kmswebrtcsession shows messages from the KMS WebRtcSession
(decision logic).

	webrtcendpoint shows messages from the WebRtcEndpoint (very
basic logging).

	Event MediaFlow{In|Out} state changes:

export GST_DEBUG="3,KurentoMediaElementImpl:5"

	Player:

export GST_DEBUG="3,playerendpoint:5"

	Recorder:

export GST_DEBUG="3,KurentoRecorderEndpointImpl:4,recorderendpoint:5,qtmux:5"

	REMB congestion control:

export GST_DEBUG="3,kmsremb:5"

Notes:

	kmsremb:5 (debug level 5) shows only effective REMB send/recv
values.

	kmsremb:6 (debug level 6) shows full handling of all source
SSRCs.

	RPC calls:

export GST_DEBUG="3,KurentoWebSocketTransport:5"

	RTP Sync:

export GST_DEBUG="3,kmsutils:5,rtpsynchronizer:5,rtpsynccontext:5,basertpendpoint:5"

	SDP processing:

export GST_DEBUG="3,kmssdpsession:4"

	Transcoding of media:

export GST_DEBUG="3,Kurento*:5,kms*:4,agnosticbin*:7"

	Unit tests:

export GST_DEBUG="3,check:5"

3rd-party libraries: libnice

libnice is the GLib
implementation [https://nice.freedesktop.org/] of
ICE [https://doc-kurento.readthedocs.io/en/stable/glossary.html#term-ice],
the standard method used by
WebRTC [https://doc-kurento.readthedocs.io/en/stable/glossary.html#term-webrtc]
to solve the issue of NAT
Traversal [https://doc-kurento.readthedocs.io/en/stable/glossary.html#term-nat-traversal].

This library has its own logging system that comes disabled by default,
but can be enabled very easily. This can prove useful in situations
where a developer is studying an issue with the ICE process. However,
the debug output of libnice is very verbose, so it makes sense that it
is left disabled by default for production systems.

Run KMS with these environment variables defined: G_MESSAGES_DEBUG
and NICE_DEBUG. They must have one or more of these values,
separated by commas:

	libnice

	libnice-stun

	libnice-tests

	libnice-socket

	libnice-pseudotcp

	libnice-pseudotcp-verbose

	all

Example:

export G_MESSAGES_DEBUG="libnice,libnice-stun"
export NICE_DEBUG="$G_MESSAGES_DEBUG"
/usr/bin/kurento-media-server

Programmers Manual

Welcome to Kurento’s Programmer’s Manual!

This User and Programmers Guide relates to the Stream Oriented GE which
is part of the Data/Context Management chapter. Please find more
information about this Generic Enabler in the following Open
Specification.

Any feedback on this document is highly welcome, including bug reports,
typos or stuff you think should be included but is not. Please send the
feedback through
Github [https://github.com/Kurento/doc-fiware-readthedocs]. Thanks
in advance!

Writing Kurento Applications

Global Architecture

Kurento can be used following the architectural principles of the web. That is, creating a multimedia application based on Kurento can be a similar experience to creating a web application using any of the popular web development frameworks.

At the highest abstraction level, web applications have an architecture comprised of three different layers:

	Presentation layer (client side): Here we can find all the application code which is in charge of interacting with end users so that information is represented in a comprehensive way. This usually consists on HTML pages.

	Application logic (server side): This layer is in charge of implementing the specific functions executed by the application.

	Service layer (server or Internet side): This layer provides capabilities used by the application logic such as databases, communications, security, etc. These services can be hosted in the same server as the application logic, or can be provided by external parties.

Following this parallelism, multimedia applications created using Kurento can also be implemented with the same architecture:

	Presentation layer (client side): Is in charge of multimedia representation and multimedia capture. It is usually based on specific built-in capabilities of the client. For example, when creating a browser-based application, the presentation layer will use capabilities such as the <video> HTML tag or the WebRTC JavaScript APIs.

	Application logic: This layer provides the specific multimedia logic. In other words, this layer is in charge of building the appropriate pipeline (by chaining the desired Media Elements) that the multimedia flows involved in the application will need to traverse.

	Service layer: This layer provides the multimedia services that support the application logic such as media recording, media ciphering, etc. The Kurento Media Server (i.e. the specific Media Pipeline of Media Elements) is in charge of this layer.

The interesting aspect of this discussion is that, as happens with web development, Kurento applications can place the Presentation layer at the client side and the Service layer at the server side. However the Application logic, in both cases, can be located at either of the sides or even distributed between them. This idea is represented in the following picture:

[image: Layered architecture of web and multimedia applications]
Layered architecture of web and multimedia applications. Applications created using Kurento (right) can be similar to standard Web applications (left). Both types of applications may choose to place the application logic at the client or at the server code.

This means that Kurento developers can choose to include the code creating the specific media pipeline required by their applications at the client side (using a suitable Kurento Client or directly with Kurento Protocol) or can place it at the server side.

Both options are valid but each of them implies different development styles. Having said this, it is important to note that in the web developers usually tend to maintain client side code as simple as possible, bringing most of their application logic to the server. Reproducing this kind of development experience is the most usual way of using Kurento.

Note

In the following sections it is considered that all Kurento handling is done at the server side. Although this is the most common way of using Kurento, is important to note that all multimedia logic can be implemented at the client with the Kurento JavaScript Client.

Application Architecture

Kurento, as most multimedia communication technologies out there, is built using two layers (called Planes) to abstract key functions in all interactive communication systems:

	Signaling Plane. The parts of the system in charge of the management of communications, that is, the modules that provides functions for media negotiation, QoS parametrization, call establishment, user registration, user presence, etc. are conceived as forming part of the Signaling Plane.

	Media Plane. Functionalities such as media transport, media encoding/decoding and media processing make the Media Plane, which takes care of handling the media. The distinction comes from the telephony differentiation between the handling of voice and the handling of meta-information such as tone, billing, etc.

The following figure shows a conceptual representation of the high level architecture of Kurento:

[image: Kurento Architecture]
Kurento Architecture. Kurento architecture follows the traditional separation between signaling and media Planes.

The right side of the picture shows the application, which is in charge of the signaling Plane and contains the business logic and connectors of the particular multimedia application being deployed. It can be build with any programming technology like Java, Node.js, PHP, Ruby, .NET, etc. The application can use mature technologies such as HTTP and SIP Servlets, Web Services, database connectors, messaging services, etc. Thanks to this, this Plane provides access to the multimedia signaling protocols commonly used by end-clients such as SIP, RESTful and raw HTTP based formats, SOAP, RMI, CORBA or JMS. These signaling protocols are used by client side of applications to command the creation of media sessions and to negotiate their desired characteristics on their behalf. Hence, this is the part of the architecture, which is in contact with application developers and, for this reason, it needs to be designed pursuing simplicity and flexibility.

On the left side, we have the Kurento Media Server, which implements the media Plane capabilities providing access to the low-level media features: media transport, media encoding/decoding, media transcoding, media mixing, media processing, etc. The Kurento Media Server must be capable of managing the multimedia streams with minimal latency and maximum throughput. Hence the Kurento Media Server must be optimized for efficiency.

Communicating client, server and Kurento

As can be observed in the figure above, a Kurento application involves interactions
among three main modules:

	Client Application: Involves the native multimedia capabilities of the client platform plus the specific client-side application logic. It can use Kurento Clients designed for client platforms (for example, Kurento JavaScript Client).

	Application Server: Involves an application server and the server-side application logic. It can use Kurento Clients designed to server platforms (for example, Kurento Java Client for Java EE and Kurento JavaScript Client for Node.js).

	Kurento Media Server: Receives commands to create specific multimedia capabilities (i.e. specific pipelines adapted to the needs of the application).

The interactions maintained among these modules depend on the specifics of each application. However, in general, for most applications can be reduced to the following conceptual scheme:

[image: Main interactions between architectural modules]
Main interactions between architectural modules. These occur in two phases: negotiation and media exchange. Remark that the color of the different arrows and boxes is aligned with the architectural figures presented above.
For example, orange arrows show exchanges belonging to the signaling Pipeline, blue arrows show exchanges belonging to the Kurento Protocol, red boxes are associated to the Kurento Media Server, and green boxes with the application.

1. Media negotiation phase (signaling)

At a first stage, a client (a browser in a computer, a mobile application, etc.) issues a message to the application requesting some kind of multimedia capability. This message can be implemented with any protocol (HTTP, WebSocket, SIP, etc.). For instance, that request could ask for the visualization of a given video clip.

When the application receives the request, if appropriate, it will carry out the specific server side application logic, which can include Authentication, Authorization and Accounting (AAA), CDR generation, consuming some type of web service, etc.

After that, the application processes the request and, according to the specific instructions programmed by the developer, commands Kurento Media Server to instantiate the suitable Media Elements and to chain them in an appropriate Media Pipeline. Once the pipeline has been created successfully, Kurento Media Server responds accordingly and the application forwards the successful response to the client, showing it how and where the media service can be reached.

During the above mentioned steps no media data is really exchanged. All the interactions have the objective of negotiating the whats, hows, wheres and whens of the media exchange. For this reason, we call it the negotiation phase. Clearly, during this phase only signaling protocols are involved.

2. Media exchange phase

After the signaling part, a new phase starts with the aim to produce the actual media exchange. The client addresses a request for the media to the Kurento Media Server using the information gathered during the negotiation phase.

Following with the video-clip visualization example mentioned above, the browser will send a GET request to the IP address and port of the Kurento Media Server where the clip can be obtained and, as a result, an HTTP reponse containing the media will be received.

Following the discussion with that simple example, one may wonder why such a complex scheme for just playing a video, when in most usual scenarios clients just send the request to the appropriate URL of the video without requiring any negotiation. The answer is straightforward. Kurento is designed for media applications involving complex media processing. For this reason, we need to establish a two-phase mechanism enabling a negotiation before the media exchange. The price to pay is that simple applications, such as one just downloading a video, also need to get through these phases. However, the advantage is that when creating more advanced services the same simple philosophy will hold. For example, if we want to add Augmented Reality or Computer Vision features to that video-clip, we just need to create the appropriate pipeline holding the desired Media Elements during the negotiation phase. After that, from the client perspective, the processed clip will be received as any other video.

Real time WebRTC applications with Kurento

The client communicates its desired media capabilities through an SDP Offer/Answer negotiation. Hence, Kurento is able to instantiate the appropriate WebRTC endpoint, and to require it to generate an SDP Answer based on its own capabilities and on the SDP Offer. When the SDP Answer is obtained, it is given back to the client and the media exchange can be started. The interactions among the different modules are summarized in the following picture:

[image: Interactions in a WebRTC session]
Interactions in a WebRTC session. During the negotiation phase, an SDP Offer is sent to KMS, requesting the capabilities of the client. As a result, Kurento Media Server generates an SDP Answer that can be used by the client for establishing the media exchange.

The application developer is able to create the desired pipeline during the negotiation phase, so that the real-time multimedia stream is processed accordingly to the application needs.

As an example, imagine that you want to create a WebRTC application recording the media received from the client and augmenting it so that if a human face is found, a hat will be rendered on top of it. This pipeline is schematically shown in the figure below, where we assume that the Filter element is capable of detecting the face and adding the hat to it.

[image: Example pipeline for a WebRTC session]
Example pipeline for a WebRTC session. A WebRtcEndpoint is connected to a RecorderEndpoint storing the received media stream and to an Augmented Reality filter, which feeds its output media stream back to the client. As a result, the end user will receive its own image filtered (e.g. with a hat added onto her head) and the stream will be recorded and made available for further recovery into a repository (e.g. a file).

Media Pipeline

From the application developer perspective, Media Elements are like Lego pieces: you just need to take the elements needed for an application and connect them, following the desired topology. In Kurento jargon, a graph of connected media elements is called a Media Pipeline. Hence, when creating a pipeline, developers need to determine the capabilities they want to use (the Media Elements) and the topology determining which Media Element provides media to which other Media Elements (the connectivity).

[image: Simple Example of a Media Pipeline]
Simple Example of a Media Pipeline

The connectivity is controlled through the connect primitive, exposed on all Kurento Client APIs.

This primitive is always invoked in the element acting as source and takes as argument the sink element following this scheme:

sourceMediaElement.connect(sinkMediaElement)

For example, if you want to create an application recording WebRTC streams into the file system, you’ll need two media elements: WebRtcEndpoint and RecorderEndpoint. When a client connects to the application, you will need to instantiate these media elements making the stream received by the
WebRtcEndpoint (which is capable of receiving WebRTC streams) to be fed to the RecorderEndpoint (which is capable of recording media streams into the file system). Finally you will need to connect them so that the stream received by the former is transferred into the later:

WebRtcEndpoint.connect(RecorderEndpoint)

To simplify the handling of WebRTC streams in the client-side, Kurento provides an utility called WebRtcPeer. Nevertheless, the standard WebRTC API (getUserMedia, RTCPeerConnection, and so on) can also be used to connect to WebRtcEndpoints. For further information please visit the Tutorials section.

Integration with Orion: kurento-fiware java module

The Kurento team has developed a small module that you can use in your
own application and it would make it easier to connect with Orion, and
make use of it in order to gather the context generated by your
application related with kurento (MediaEvents and Devices). Also it has
been designed to be easily extended so you can implement your own
publishers and readers for any other entity.

How to use it

	Clone the gitHub repository.

git clone https://github.com/Kurento/kurento-fiware-java.git

	Go to the project kurento-fiware (the other folder contains an example of how to use it).

cd kurento-fiware

	Build and install in your maven local repo (you will need Java >= 1.8).

mvn install

	Import in your project the dependency

<dependency>
 <groupId>org.kurento</groupId>
 <artifactId>kurento-fiware</artifactId>
 <version>2.0-SNAPSHOT</version>
</dependency>

Processing Media Streams

Any Media Stream that flows in Kurento can be processed by one or more
modules. Some modules would rise Media Events following the logic they
are meant to with associated information. For example, the built-in
module “kms-platedetector” would rise a Media Event whenever a traffic
plate is detected, this event would contain the plate number read from
the Media Stream. This Events should be collected by the client
application an the application should act upon them.

Kurento Events

You can configure to receive Kurento Events into your client application
and extract relevant context information that can be fed to Orion.

Example:

You develop a Client Application with a Kurento attached and the
kms-platedetector built-in module. Each time a traffic plate is detected
, Kurento rises a Event and your application reacts by:

	Inserting the Event as a MediaEvent in Orion.

	Looking for the plate in Orion, and update the location of the
vehicle associated.

MediaEvents to Orion

MediaEvent is a generic FIWARE DataModel (still under approval
process) that allows any application using Kurento to insert in Orion
any type or Kurento Event risen by any module If you are using Java for
implementing your client application you can
use kurento-fiware [https://github.com/naevatec/kurento-fiware-java/tree/master/kurento-fiware] module
to simplify all the integration.

While using the provided library you need just to:

	Configure the connection to the Orion instance by:

final OrionConnectorConfiguration orionConnectorConfiguration = new OrionConnectorConfiguration();

By default the configuration points to http://localhost:1026

	Define how to exactly match the detected Event to the MediaEvent
DataModel extending the MediaEventPublisher defining a
mapEntityToOrionEntity. E.g.

public MediaEvent mapEntityToOrionEntity(DevicePlateDetectedEvent kurentoEvent) {
 MediaEvent orion_entity = new MediaEvent();
 orion_entity.setId(...);
 orion_entity._getGsmaCommons().setDateCreated(kurentoEvent.getTimestamp());
 orion_entity.setData(kurentoEvent.getPlate());
 if (kurentoEvent.getCamera() != null) {
 orion_entity.setDeviceSource(kurentoEvent.getCamera().getId());
 }
 orion_entity.setMediasource(mapKurentoMediaSource(kurentoEvent.getSource()));
 return orion_entity;
}

	And publish the event.

plateDetectedEventPublisher.publish(extendedEvent);

You can check the specifics of the MediaEvent DataModel
here [https://github.com/Fiware/dataModels].

Devices

The cameras used for generating the Media Streams are also part of the
context so we expect them to be also part of the information that can be
found in Orion. Devices are an an integral part of the common entities
found in Orion and they are defined as a very generic FIWARE DataModel,
so any kind of “camera” used in the Kurento Client application can be
represented in this
DataModel [https://fiware-datamodels.readthedocs.io/en/latest/Device/Device/doc/spec/index.html].

If your Client Kurento Application is developed in Java you can also
make use of the provided
kurento-fiware [https://github.com/naevatec/kurento-fiware-java/tree/master/kurento-fiware]
module to simplify all the integration.

The essential steps for inserting Devices into Orion are similar to the
Media Events’ ones:

	Configure the connection to the Orion instance by:

final OrionConnectorConfiguration orionConnectorConfiguration = new OrionConnectorConfiguration();

By default the configuration points to http://localhost:1026

	Define how to exactly match the custom Camera used in the application
to the Device DataModel extending the DevicePublisher defining a
mapEntityToOrionEntity. E.g.

public Device mapEntityToOrionEntity(Camera cam) {

 String[] supportedProtocol = { "WebRTC" };

 Device entity = new Device();

 entity.setControlledAsset(cam.getControlledAsset());
 entity.setDateInstalled(cam.getCreationDate());
 entity.setDeviceState(cam.getState());
 entity._getDeviceCommons().setSupportedProtocol(supportedProtocol);
 entity._getGsmaCommons().setId(cam.getId());
 entity._getGsmaCommons().setDateCreated(cam.getCreationDate());
 entity._getGsmaCommons().setDescription("Plate detector camera example");
 entity._getGsmaCommons().setName(cam.getName());
 entity.setIpAddress(cam.getIp());
 return entity;
}

	Publish the Device.

CamPublisher cameraPublisher = new CamPublisher(orionConnectorConfiguration);
cameraPublisher.publish(cam);

	Update the Device for each change of state (e.g. “PAUSED” /
“PROCESSING”) or each last value detected.

final OrionConnectorConfiguration orionConnectorConfiguration = new OrionConnectorConfiguration();
CamPublisher cameraPublisher = new CamPublisher(orionConnectorConfiguration);
CamReader cameraReader = new CamReader(orionConnectorConfiguration);
Camera cam = cameraReader.readObject(id);
/* Update values of cam */
cameraPubliser.update(cam);

Other entities

While developing your Smart Solution you would need to work with other
Entities in Orion, for example Vehicles, Alerts, places such as museums,
gardens, etc. While Kurento Entities aren’t directly related to these,
the kurento-fiware module, provides an easy way of extending its
functionality to any other DataModel and any other custom Object.

In this case you can replicate the structure that the module provides for
the Device and MediaEvent entities in your project. This means to provide
the following classes:

	YourOrionEntity.java: That is the class to map the OrionEntity you need. This class must implement the OrionEntity Interface.

	<YourOrionEntity>OrionPublisher.java: This needs to be an extension of the DefaultOrionPublisher. You will need to define:

	O: the OrionEntity that will be published in orion in this case <YourOrionEntity>.

	T: a custom class that can be mapped to <YourOrionEntity>.

	mapEntityToOrionEntity is the method that would be able to map from T to O.

	<YourOrionEntity>OrionReader.java: This needs to be an extension of the DefaultOrionReader. As for the publisher you will need to define:

	O: the OrionEntity that will be published in orion in this case <YourOrionEntity>.

	T: a custom class that can be mapped to <YourOrionEntity>.

	mapOrionEntityToEntity; is the method that would be able to map from O to P.

In case YourOrionEntity needs some processing for presenting a plain JSON to Orion or for reading it you may need to provide also a <YourOrionEntity>JsonManager to the OrionConnector.

More

Follow the links for more information about the kurento-fiware module:

	Source code [https://github.com/Kurento/kurento-fiware-java]

	JavaDoc

	Tutorial

Java Module - Plate Detector Filter

This web application consists on a WebRTC video communication in mirror
(loopback) with a plate detector filter element.

Note

This tutorial has been configured to use https. Follow the instructions
to secure your application.

For the impatient: running this example

First of all, you should have available:

	An instance of kurento running with the kms-platedetector module.
Further information on the installation guide.

	An instance of orion running. See: Orion installation
guide [https://fiware-orion.readthedocs.io/en/master/admin/install/index.html].

To launch the application, you need:

	To clone the GitHub project where this demo is hosted:

git clone https://github.com/Kurento/kurento-fiware-java

	Install the kurento-fiware module:

cd kurento-fiware-java/kurento-fiware
mvn install

	Run the application

cd ../kurento-tutorial-java/kurento-platedetector-fiware
mvn -U clean spring-boot:run -Dkms.url=ws://localhost:8888/kurento

The web application starts on port 8443 in the localhost by default. Therefore,
open the URL https://localhost:8443/ in a WebRTC compliant browser (Chrome,
Firefox).

Note

These instructions work only if both Kurento Media Server and Orion are up and running in the same machine
as the tutorial.

Understanding this example

This application uses computer vision and augmented reality techniques to detect
a plate in a WebRTC stream on optical character recognition (OCR).

The interface of the application (an HTML web page) is composed by a HTML5
video tag that is activated once the camera is registered in orion. The video camera stream
(the local client-side stream) is sent to Kurento Media Server, which processes it and
registers the events rised in Orion. To implement this, we need to create
a Media Pipeline composed by the following Media Element s:

[image: WebRTC with plateDetector filter Media Pipeline]
WebRTC with plateDetector filter Media Pipeline

The complete source code of this demo can be found in
GitHub [https://github.com/Kurento/kurento-fiware-java.git].

This example is a modified version of the
Plate Detector Module Tutorial [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/module-platedetector.html]. A screenshot of the
running example is shown in the following picture:

[image: Plate detector demo in action]
Plate detector demo in action

The following snippet shows how the media pipeline is implemented in the Java
server-side code of the demo. An important issue in this code is that a
listener is added to the PlateDetectorFilter object
(addPlateDetectedListener). This way, each time a plate is detected in the
stream, a message is sent to the client side and the event is registered in Orion.
As shown in the screenshot above, this event is printed in the console of the GUI.

 private void start(final WebSocketSession session, JsonObject jsonMessage) {
 try {
 // Media Logic (Media Pipeline and Elements)
 UserSession user = new UserSession();
 MediaPipeline pipeline = kurento.createMediaPipeline();
 user.setMediaPipeline(pipeline);
 WebRtcEndpoint webRtcEndpoint = new WebRtcEndpoint.Builder(pipeline).build();
 user.setWebRtcEndpoint(webRtcEndpoint);
 users.put(session.getId(), user);

 webRtcEndpoint.addIceCandidateFoundListener(new EventListener<IceCandidateFoundEvent>() {

 @Override
 public void onEvent(IceCandidateFoundEvent event) {
 JsonObject response = new JsonObject();
 response.addProperty("id", "iceCandidate");
 response.add("candidate", JsonUtils.toJsonObject(event.getCandidate()));
 try {
 synchronized (session) {
 session.sendMessage(new TextMessage(response.toString()));
 }
 } catch (IOException e) {
 log.debug(e.getMessage());
 }
 }
 });

 PlateDetectorFilter plateDetectorFilter = new PlateDetectorFilter.Builder(pipeline).build();

 webRtcEndpoint.connect(plateDetectorFilter);
 plateDetectorFilter.connect(webRtcEndpoint);

 plateDetectorFilter.addPlateDetectedListener(new EventListener<PlateDetectedEvent>() {
 @Override
 public void onEvent(PlateDetectedEvent event) {

 final OrionConnectorConfiguration orionConnectorConfiguration = new OrionConnectorConfiguration();

 final PlateDetectedEventPublisher plateDetectedEventPublisher = new PlateDetectedEventPublisher(
 orionConnectorConfiguration);

 DevicePlateDetectedEvent extendedEvent = new DevicePlateDetectedEvent(event, null);

 // TODO add the camera information (from {@link: CameraSession}

 JsonObject response = new JsonObject();
 response.addProperty("id", "plateDetected");
 response.addProperty("plate", event.getPlate());
 log.debug("plateDetectorFilter.onEvent({}) => {}", event.getPlate(), response.toString());
 try {
 session.sendMessage(new TextMessage(response.toString()));
 plateDetectedEventPublisher.publish(extendedEvent);
 log.debug("");
 } catch (OrionConnectorException e) {
 log.warn("Could not publish event in ORION");
 sendError(session, e.getMessage());
 } catch (Throwable t) {
 log.warn("Thowable: {}", t.getLocalizedMessage());
 sendError(session, t.getMessage());
 }
 }
 });

 // SDP negotiation (offer and answer)
 String sdpOffer = jsonMessage.get("sdpOffer").getAsString();
 String sdpAnswer = webRtcEndpoint.processOffer(sdpOffer);

 // Sending response back to client
 JsonObject response = new JsonObject();
 response.addProperty("id", "startResponse");
 response.addProperty("sdpAnswer", sdpAnswer);

 synchronized (session) {
 session.sendMessage(new TextMessage(response.toString()));
 }

 webRtcEndpoint.gatherCandidates();

 } catch (Throwable t) {
 sendError(session, t.getMessage());
 }
}

Dependencies

This Java Spring application is implemented using Maven. The relevant
part of the
pom.xml [https://github.com/Kurento/kurento-tutorial-java/blob/master/kurento-show-data-channel/pom.xml]
is where Kurento dependencies are declared. As the following snippet shows, we
need four dependencies: the Kurento Client Java dependency (kurento-client)
and the JavaScript Kurento utility library (kurento-utils) for the
client-side, the KMS platedetector module (platedetector) and the kurento-fiware
module (kurento-fiware).

Writing Kurento Modules

You can expand the Kurento Media Server developing your own modules. There are two flavors of Kurento modules:

	Modules based on OpenCV. This kind of modules are recommended if you would like to develop a filter providing Computer Vision or Augmented Reality features.

	Modules based on GStreamer. This kind of modules provide a generic entry point for media processing with the GStreamer framework. Such modules are more powerful but also they are more difficult to develop. Skills in GStreamer development are necessary.

The starting point to develop a filter is to create the filter structure. For this task, you can use the kurento-module-scaffold tool. This tool is distributed with the kurento-media-server-dev package. To install this tool run this command:

sudo apt-get install kurento-media-server-dev

The tool usage is different depending on the chosen flavor:

	OpenCV module:

kurento-module-scaffold.sh <module_name> <output_directory> opencv_filter

	Gstreamer module:

kurento-module-scaffold.sh <module_name> <output_directory>

The tool generates the folder tree, all the needed CmakeLists.txt files, and example files of Kurento module descriptor files (.kmd). These files contain the description of the modules, the constructor, the methods, the properties, the events
and the complex types defined by the developer.

Once kmd files are completed it is time to generate the corresponding code. The tool
kurento-module-creator generates glue code to server-side. Run this from the root directory:

cd build
cmake ..

The following sections detail how to create your module depending on the filter type you chose (OpenCV or GStreamer).

OpenCV module

We have four files in src/server/implementation/:

ModuleNameImpl.cpp
ModuleNameImpl.hpp
ModuleNameOpenCVImpl.cpp
ModuleNameOpenCVImpl.hpp

The first two files should not be modified. The last two files will contain the logic of your module.

The file ModuleNameOpenCVImpl.cpp contains functions to deal with the methods and the parameters (you must implement the logic). Also, this file contains a function called process. This function will be called with each new frame, thus you must implement the logic of your filter inside it.

GStreamer module

In this case, we have two directories inside the src/ folder:

	The gst-plugins/ folder contains the implementation of your GStreamer Element (the kurento-module-scaffold generates a dummy filter).

	Inside the server/objects/ folder you have two files:

ModuleNameImpl.cpp
ModuleNameImpl.hpp

In the file ModuleNameImpl.cpp you have to invoke the methods of your GStreamer element. The module logic will be implemented in the GStreamer Element.

For both kind of modules

If you need extra compilation dependencies you can add compilation rules to the kurento-module-creator using the function generate_code in the CmakeLists.txt file, located in src/server/.

The following parameters are available:

	SERVER_STUB_DESTINATION (required)
The generated code that you may need to modify will be generated on the folder indicated by this parameter.

	MODELS (required)
This parameter receives the folders where the models (.kmd files) are located.

	INTERFACE_LIB_EXTRA_SOURCES
INTERFACE_LIB_EXTRA_HEADERS
INTERFACE_LIB_EXTRA_INCLUDE_DIRS
INTERFACE_LIB_EXTRA_LIBRARIES
These parameters allow to add additional source code to the static library. Files included in INTERFACE_LIB_EXTRA_HEADERS will be installed in the system as headers for this library. All the parameters accept a list as input.

	SERVER_IMPL_LIB_EXTRA_SOURCES
SERVER_IMPL_LIB_EXTRA_HEADERS
SERVER_IMPL_LIB_EXTRA_INCLUDE_DIRS
SERVER_IMPL_LIB_EXTRA_LIBRARIES
These parameters allow to add additional source code to the interface library. Files included in SERVER_IMPL_LIB_EXTRA_HEADERS will be installed in the system as headers for this library. All the parameters accept a list as input.

	MODULE_EXTRA_INCLUDE_DIRS
MODULE_EXTRA_LIBRARIES
These parameters allow to add extra include directories and libraries to the module.

	SERVER_IMPL_LIB_FIND_CMAKE_EXTRA_LIBRARIES
This parameter receives a list of strings. Each string has this format: libname[libversion range] (possible ranges can use symbols AND OR < <= > >= ^ and ~).

	^ indicates a version compatible using Semantic Versioning.

	~ Indicates a version similar, that can change just last indicated version character.

Once the module logic is implemented and the compilation process is finished, you need to install your module in your system. You can follow two different ways:

1. You can generate the Debian package (debuild -us -uc) and install it
(dpkg -i).
2. You can define the following environment variables in the file /etc/default/kurento:

KURENTO_MODULES_PATH=<module_path>/build/src
GST_PLUGIN_PATH=<module_path>/build/src

Now, you need to generate code for Java or JavaScript to use your module from the client-side.

	For Java, from the build directory you have to execute cmake .. -DGENERATE_JAVA_CLIENT_PROJECT=TRUE command, that generates a Java folder with client code. You can run make java_install and your module will be installed in your Maven local repository. To use the module in your Maven project, you have to add the dependency to the pom.xml file:

<dependency>
 <groupId>org.kurento.module</groupId>
 <artifactId>modulename</artifactId>
 <version>moduleversion</version>
</dependency>

	For JavaScript, you should run cmake .. -DGENERATE_JS_CLIENT_PROJECT=TRUE. This command generates a js/ folder with client code. Now you can manually add the JavaScript library to use your module in your application. Alternatively, you can use Bower (for Browser JavaScript) or NPM (for Node.js). To do that, you should add your JavaScript module as a dependency in your bower.json or package.json file respectively, as follows:

"dependencies": {
 "modulename": "moduleversion"
}

Examples

Simple examples for both kind of modules are available in GitHub:

	OpenCV module [https://github.com/Kurento/kms-opencv-plugin-sample].

	GStreamer module [https://github.com/Kurento/kms-plugin-sample].

There are a lot of examples showking how to define methods, parameters or events in
all our public built-in modules:

	kms-pointerdetector [https://github.com/Kurento/kms-pointerdetector/tree/master/src/server/interface].

	kms-crowddetector [https://github.com/Kurento/kms-crowddetector/tree/master/src/server/interface].

	kms-chroma [https://github.com/Kurento/kms-chroma/tree/master/src/server/interface].

	kms-platedetector [https://github.com/Kurento/kms-platedetector/tree/master/src/server/interface].

Moreover, all our modules are developed using this methodology. For that reason you can take a look to our main modules:

	kms-core [https://github.com/Kurento/kms-core].

	kms-elements [https://github.com/Kurento/kms-elements].

	kms-filters [https://github.com/Kurento/kms-filters].

Tutorials

Here you can check the different tutorials/examples available to
comprehend Kurento and start using it for your benefit.

Genal Java Kurento tutorials

	Hello World [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/tutorial-helloworld.html]

	WebRTC Magic Mirror [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/tutorial-magicmirror.html]

	RTP Receiver [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/tutorial-rtp-receiver.html]

	WebRTC One-To-One video call [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/tutorial-one2one.html]

	WebRTC One-To-One video call with recording and filtering [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/tutorial-one2one-adv.html]

	WebRTC Many-To-Many video call (Group call) [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/tutorial-groupcall.html]

	Media Elements metadata [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/tutorial-metadata.html]

	WebRTC Media Player [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/tutorial-player.html]

	WebRTC outgoing Data Channels [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/tutorial-send-datachannel.html]

	WebRTC incoming Data Chanel [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/tutorial-show-datachannel.html]

	WebRTC repository [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/tutorial-recorder.html]

Kurento modules Java tutorials

	Pointer Detector Filter [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/module-pointerdetector.html]

	Chroma Filter [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/module-chromafilter.html]

	Crowd Detector Filter [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/module-crowddetector.html]

	Plate Detector Filter [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/module-platedetector.html]

Smart Solition tutorials

	Plate Detector with Orion

Java Module - Plate Detector Filter

This web application consists on a WebRTC video communication in mirror
(loopback) with a plate detector filter element.

Note

This tutorial has been configured to use https. Follow the instructions
to secure your application.

For the impatient: running this example

First of all, you should have available:

	An instance of kurento running with the kms-platedetector module.
Further information on the installation guide.

	An instance of orion running. See: Orion installation
guide [https://fiware-orion.readthedocs.io/en/master/admin/install/index.html].

To launch the application, you need:

	To clone the GitHub project where this demo is hosted:

git clone https://github.com/Kurento/kurento-fiware-java

	Install the kurento-fiware module:

cd kurento-fiware-java/kurento-fiware
mvn install

	Run the application

cd ../kurento-tutorial-java/kurento-platedetector-fiware
mvn -U clean spring-boot:run -Dkms.url=ws://localhost:8888/kurento

The web application starts on port 8443 in the localhost by default. Therefore,
open the URL https://localhost:8443/ in a WebRTC compliant browser (Chrome,
Firefox).

Note

These instructions work only if both Kurento Media Server and Orion are up and running in the same machine
as the tutorial.

Understanding this example

This application uses computer vision and augmented reality techniques to detect
a plate in a WebRTC stream on optical character recognition (OCR).

The interface of the application (an HTML web page) is composed by a HTML5
video tag that is activated once the camera is registered in orion. The video camera stream
(the local client-side stream) is sent to Kurento Media Server, which processes it and
registers the events rised in Orion. To implement this, we need to create
a Media Pipeline composed by the following Media Element s:

[image: WebRTC with plateDetector filter Media Pipeline]
WebRTC with plateDetector filter Media Pipeline

The complete source code of this demo can be found in
GitHub [https://github.com/Kurento/kurento-fiware-java.git].

This example is a modified version of the
Plate Detector Module Tutorial [https://doc-kurento.readthedocs.io/en/stable/tutorials/java/module-platedetector.html]. A screenshot of the
running example is shown in the following picture:

[image: Plate detector demo in action]
Plate detector demo in action

The following snippet shows how the media pipeline is implemented in the Java
server-side code of the demo. An important issue in this code is that a
listener is added to the PlateDetectorFilter object
(addPlateDetectedListener). This way, each time a plate is detected in the
stream, a message is sent to the client side and the event is registered in Orion.
As shown in the screenshot above, this event is printed in the console of the GUI.

 private void start(final WebSocketSession session, JsonObject jsonMessage) {
 try {
 // Media Logic (Media Pipeline and Elements)
 UserSession user = new UserSession();
 MediaPipeline pipeline = kurento.createMediaPipeline();
 user.setMediaPipeline(pipeline);
 WebRtcEndpoint webRtcEndpoint = new WebRtcEndpoint.Builder(pipeline).build();
 user.setWebRtcEndpoint(webRtcEndpoint);
 users.put(session.getId(), user);

 webRtcEndpoint.addIceCandidateFoundListener(new EventListener<IceCandidateFoundEvent>() {

 @Override
 public void onEvent(IceCandidateFoundEvent event) {
 JsonObject response = new JsonObject();
 response.addProperty("id", "iceCandidate");
 response.add("candidate", JsonUtils.toJsonObject(event.getCandidate()));
 try {
 synchronized (session) {
 session.sendMessage(new TextMessage(response.toString()));
 }
 } catch (IOException e) {
 log.debug(e.getMessage());
 }
 }
 });

 PlateDetectorFilter plateDetectorFilter = new PlateDetectorFilter.Builder(pipeline).build();

 webRtcEndpoint.connect(plateDetectorFilter);
 plateDetectorFilter.connect(webRtcEndpoint);

 plateDetectorFilter.addPlateDetectedListener(new EventListener<PlateDetectedEvent>() {
 @Override
 public void onEvent(PlateDetectedEvent event) {

 final OrionConnectorConfiguration orionConnectorConfiguration = new OrionConnectorConfiguration();

 final PlateDetectedEventPublisher plateDetectedEventPublisher = new PlateDetectedEventPublisher(
 orionConnectorConfiguration);

 DevicePlateDetectedEvent extendedEvent = new DevicePlateDetectedEvent(event, null);

 // TODO add the camera information (from {@link: CameraSession}

 JsonObject response = new JsonObject();
 response.addProperty("id", "plateDetected");
 response.addProperty("plate", event.getPlate());
 log.debug("plateDetectorFilter.onEvent({}) => {}", event.getPlate(), response.toString());
 try {
 session.sendMessage(new TextMessage(response.toString()));
 plateDetectedEventPublisher.publish(extendedEvent);
 log.debug("");
 } catch (OrionConnectorException e) {
 log.warn("Could not publish event in ORION");
 sendError(session, e.getMessage());
 } catch (Throwable t) {
 log.warn("Thowable: {}", t.getLocalizedMessage());
 sendError(session, t.getMessage());
 }
 }
 });

 // SDP negotiation (offer and answer)
 String sdpOffer = jsonMessage.get("sdpOffer").getAsString();
 String sdpAnswer = webRtcEndpoint.processOffer(sdpOffer);

 // Sending response back to client
 JsonObject response = new JsonObject();
 response.addProperty("id", "startResponse");
 response.addProperty("sdpAnswer", sdpAnswer);

 synchronized (session) {
 session.sendMessage(new TextMessage(response.toString()));
 }

 webRtcEndpoint.gatherCandidates();

 } catch (Throwable t) {
 sendError(session, t.getMessage());
 }
}

Dependencies

This Java Spring application is implemented using Maven. The relevant
part of the
pom.xml [https://github.com/Kurento/kurento-tutorial-java/blob/master/kurento-show-data-channel/pom.xml]
is where Kurento dependencies are declared. As the following snippet shows, we
need four dependencies: the Kurento Client Java dependency (kurento-client)
and the JavaScript Kurento utility library (kurento-utils) for the
client-side, the KMS platedetector module (platedetector) and the kurento-fiware
module (kurento-fiware).

FIWARE Stream Oriented Generic Enabler - Open API Specification

The Stream Oriented API is a resource-oriented API accessed via WebSockets that
uses JSON-RPC V2.0 based representations for information exchange. An RPC call
is represented by sending a request message to a server. Each request
message has the following members:

	jsonrpc: a string specifying the version of the JSON-RPC protocol. It must
be exactly 2.0.

	id: an unique identifier established by the client that contains a string
or number. The server must reply with the same value in the response message.
This member is used to correlate the context between both messages.

	method: a string containing the name of the method to be invoked.

	params: a structured value that holds the parameter values to be used
during the invocation of the method.

When an RPC call is made by a client, the server replies with a response
object. In the case of a success, the response object contains the following
members:

	jsonrpc: it must be exactly 2.0.

	id: it must match the value of the id member in the request object.

	result: structured value which contains the invocation result.

In the case of an error, the response object contains the following members:

	jsonrpc: it must be exactly 2.0.

	id: it must match the value of the id member in the request object.

	error: object describing the error through the following members:

	code: integer number that indicates the error type that occurred

	message: string providing a short description of the error.

	data: primitive or structured value that contains additional
information about the error. It may be omitted. The value of this member
is defined by the server.

Therefore, the value of the method parameter in the request determines the
type of request/response to be exchanged between client and server. The
following section describes each pair of messages depending of the type of
method (namely: Ping, Create, Invoke, Release, Subscribe,
Unsubscribe, and OnEvent).

Ping

In order to warranty the WebSocket connectivity between the client and the
Kurento Media Server, a keep-alive method is implemented. This method is based
on a ping method sent by the client, which must be replied with a pong
message from the server. If no response is obtained in a time interval, the
client is aware that the connectivity with the media server has been lost.

Request

A ping request contains the following parameters:

	method (required, string). Value: ping.

	params (required, object). Parameters for the invocation of the ping
message, containing these member:

	interval (required, number). Time out to receive the pong message from
the server, in milliseconds. By default this value is 240000 (i.e. 40
seconds).

This is an example of ping:

	Body (application/json)

{
 "id": 1,
 "method": "ping",
 "params": {
 "interval": 240000
 },
 "jsonrpc": "2.0"
}

Response

The response to a ping request must contain a result object with a value
parameter with a fixed name: pong. The following snippet shows the pong
response to the previous ping request:

	Body (application/json)

{
 "id": 1,
 "result": {
 "value": "pong"
 },
 "jsonrpc": "2.0"
}

Create

Create message requests the creation of an Media Pipelines and Media Elements in
the Media Server. The parameter type specifies the type of the object to be
created. The parameter params contains all the information needed to create
the object. Each message needs different parameters to create the object.

Media Elements have to be contained in a previously created Media Pipeline.
Therefore, before creating Media Elements, a Media Pipeline must exist. The
response of the creation of a Media Pipeline contains a parameter called
sessionId, which must be included in the next create requests for Media
Elements.

Request

A create request contains the following parameters:

	method (required, string). Value: create.

	params (required, object). Parameters for the invocation of the create
message, containing these members:

	type (required, string). Media pipeline or media element to be
created. The allowed values are the following:

	MediaPipeline: Media Pipeline to be created.

	WebRtcEndpoint: This media element offers media streaming
using WebRTC.

	RtpEndpoint: Media element that provides bidirectional
content delivery capabilities with remote networked peers through RTP
protocol. It contains paired sink and source MediaPad for audio and
video.

	HttpPostEndpoint: This type of media element provides
unidirectional communications. Its MediaSource are related to HTTP
POST method. It contains sink MediaPad for audio and video, which
provide access to an HTTP file upload function.

	PlayerEndpoint: It provides function to retrieve contents
from seekable sources in reliable mode (does not discard media
information) and inject them into KMS. It contains one MediaSource
for each media type detected.

	RecorderEndpoint: Provides function to store contents in
reliable mode (doesn’t discard data). It contains MediaSink pads for
audio and video.

	FaceOverlayFilter: It detects faces in a video feed. The
face is then overlaid with an image.

	ZBarFilter: This Filter detects QR and bar codes in a
video feed. When a code is found, the filter raises a CodeFound.

	GStreamerFilter: This is a generic Filter interface, that
creates GStreamer filters in the media server.

	Composite: A Hub that mixes the audio stream of its
connected sources and constructs a grid with the video streams of its
connected sources into its sink.

	Dispatcher: A Hub that allows routing between arbitrary
port pairs.

	DispatcherOneToMany: A Hub that sends a given source to
all the connected sinks.

	constructorParams (required, object). Additional parameters. For
example:

	mediaPipeline (optional, string): This parameter is only
mandatory for Media Elements. In that case, the value of this
parameter is the identifier of the media pipeline which is going to
contain the Media Element to be created.

	uri (optional, string): This parameter is only required
for Media Elements such as PlayerEndpoint or RecorderEndpoint. It
is an URI used in the Media Element, i.e. the media to be played (for
PlayerEndpoint) or the location of the recording (for
RecorderEndpoint).

	properties (optional, object): Array of additional
objects (key/value).

	sessionId (optional, string). Session identifier. This parameter
is not present in the first request (typically the media pipeline
creation).

The following example shows a request message requesting the creation of an
object of the type MediaPipeline:

	Body (application/json)

{
 "id": 2,
 "method": "create",
 "params": {
 "type": "MediaPipeline",
 "constructorParams": {},
 "properties": {}
 },
 "jsonrpc": "2.0"
}

The following example shows a request message requesting the creation of an
object of the type WebRtcEndpoint within an existing Media Pipeline
(identified by the parameter mediaPipeline). Notice that in this request, the
sessionId is already present, while in the previous example it was not (since
at that point was unknown for the client):

	Body (application/json)

{
 "id": 3,
 "method": "create",
 "params": {
 "type": "WebRtcEndpoint",
 "constructorParams": {
 "mediaPipeline": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline"
 },
 "properties": {},
 "sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
 },
 "jsonrpc": "2.0"
}

Response

The response message contains the identifier of the new object in the field
value. As usual, the message id must match with the request message. The
sessionId is also returned in each response. A create response contains the
following parameters:

	result (required, object). Result of the create invocation:

	value (required, number). Identifier of the created media element.

	sessionId (required, string). Session identifier.

The following examples shows the responses to the previous request messages
(respectively, the response to the MediaPipeline create message, and then the
response to the to WebRtcEndpoint create message). In the first example, the
parameter value identifies the created Media Pipelines, and sessionId
is the identifier of the current session.

	Body (application/json)

{
 "id": 2,
 "result": {
 "value": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline",
 "sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
 },
 "jsonrpc": "2.0"
}

In the second response example, the parameter value identifies the created
Media Element (a WebRtcEndpoint in this case). Notice that this value also
identifies the Media Pipeline in which the Media Element is contained. The
parameter sessionId is also contained in the response.

	Body (application/json)

{
 "id": 3,
 "result": {
 "value": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline/087b7777-aab5-4787-816f-f0de19e5b1d9_kurento.WebRtcEndpoint",
 "sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
 },
 "jsonrpc": "2.0"
}

Invoke

Invoke message requests the invocation of an operation in the specified object.
The parameter object indicates the identifier of the object in which the
operation will be invoked. The parameter operation carries the name of the
operation to be executed. Finally, the parameter operationParams contains the
parameters needed to execute the operation.

Request

An invoke request contains the following parameters:

	method (required, string). Value is invoke.

	params (required, object)

	object (required, number). Identifier of the source media element.

	operation (required, string). Operation invoked. Allowed Values:

	connect. Connect two media elements.

	play. Start the play of a media (PlayerEndpoint).

	record. Start the record of a media (RecorderEndpoint).

	setOverlayedImage. Set the image that is going to be
overlaid on the detected faces in a media stream
(FaceOverlayFilter).

	processOffer. Process the offer in the SDP negotiation
(WebRtcEndpoint).

	gatherCandidates. Start the ICE candidates gathering to
establish a WebRTC media session (WebRtcEndpoint).

	addIceCandidate. Add ICE candidate (WebRtcEndpoint).

	operationParams (optional, object).

	sink (required, number). Identifier of the sink media
element.

	offer (optional, string). SDP offer used in the WebRTC SDP
negotiation (in WebRtcEndpoint).

	sessionId (required, string). Session identifier.

The following example shows a request message requesting the invocation of the
operation connect on a PlayerEndpoint connected to a WebRtcEndpoint:

	Body (application/json)

{
 "id": 5,
 "method": "invoke",
 "params": {
 "object": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline/76dcb8d7-5655-445b-8cb7-cf5dc91643bc_kurento.PlayerEndpoint",
 "operation": "connect",
 "operationParams": {
 "sink": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline/087b7777-aab5-4787-816f-f0de19e5b1d9_kurento.WebRtcEndpoint"
 },
 "sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
 },
 "jsonrpc": "2.0"
}

Response

The response message contains the value returned while executing the operation
invoked in the object or nothing if the operation doesn’t return any value.

An invoke response contains the following parameters:

	result (required, object)

	sessionId (required, string). Session identifier.

	value (optional, object). Additional object which describes the
result of the Invoke operation. For example, in a WebRtcEndpoint this
field is the SDP response (WebRTC SDP negotiation).

The following example shows a typical response while invoking the operation
connect:

	Body (application/json)

{
 "id": 5,
 "result": {
 "sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
 },
 "jsonrpc": "2.0"
}

Release

Release message requests the release of the specified object. The parameter
object indicates the id of the object to be released:

Request

A release request contains the following parameters:

	method (required, string). Value is release.

	params (required, object).

	object (required, number). Identifier of the media element or
pipeline to be released.

	sessionId (required, string). Session identifier.

	Body (application/json)

{
 "id": 36,
 "method": "release",
 "params": {
 "object": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline",
 "sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
 },
 "jsonrpc": "2.0"
}

Response

A release response contains the following parameters:

	result (required, object)

	sessionId (required, string). Session identifier.

The response message only contains the sessionId. The following example shows
the typical response of a release request:

	Body (application/json)

{
 "id": 36,
 "result": {
 "sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
 },
 "jsonrpc": "2.0"
}

Subscribe

Subscribe message requests the subscription to a certain kind of events in the
specified object. The parameter object indicates the id of the object to
subscribe for events. The parameter type specifies the type of the events. If a
client is subscribed for a certain type of events in an object, each time an
event is fired in this object, a request with method onEvent is sent from
Kurento Media Server to the client. This kind of request is described few
sections later.

Request

A subscribe request contains the following parameters:

	method (required, string). Value is subscribe.

	params (required, object). Parameters for the invocation of the subscribe
message, containing these members:

	type (required, string). Media event to be subscribed. The allowed
values are the following:

	CodeFoundEvent: raised by a ZBarFilter when a code is
found in the data being streamed.

	ConnectionStateChanged: Indicates that the state of the
connection has changed.

	ElementConnected: Indicates that an element has been
connected to other.

	ElementDisconnected: Indicates that an element has been
disconnected.

	EndOfStream: Event raised when the stream that the element
sends out is finished.

	Error: An error related to the MediaObject has occurred.

	MediaSessionStarted: Event raised when a session starts.
This event has no data.

	MediaSessionTerminated: Event raised when a session is
terminated. This event has no data.

	MediaStateChanged: Indicates that the state of the media
has changed.

	ObjectCreated: Indicates that an object has been created
on the media server.

	ObjectDestroyed: Indicates that an object has been
destroyed on the media server.

	OnIceCandidate: Notify of a new gathered local candidate.

	OnIceComponentStateChanged: Notify about the change of an
ICE component state.

	OnIceGatheringDone: Notify that all candidates have been
gathered.

	object (required, string). Media element identifier in which the
event is subscribed.

	sessionId (required, string). Session identifier.

The following example shows a request message requesting the subscription of the
event type EndOfStream on a PlayerEndpoint Media Element:

	Body (application/json)

{
 "id": 11,
 "method": "subscribe",
 "params": {
 "type": "EndOfStream",
 "object": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline/76dcb8d7-5655-445b-8cb7-cf5dc91643bc_kurento.PlayerEndpoint",
 "sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
 },
 "jsonrpc": "2.0"
}

Response

The response message contains the subscription identifier. This value can be
used later to remove this subscription.

A subscribe response contains the following parameters:

	result (required, object). Result of the subscription invocation. This
object contains the following members:

	value (required, number). Identifier of the media event.

	sessionId (required, string). Session identifier.

The following example shows the response of subscription request. The value
attribute contains the subscription identifier:

	Body (application/json)

{
 "id": 11,
 "result": {
 "value": "052061c1-0d87-4fbd-9cc9-66b57c3e1280",
 "sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
 },
 "jsonrpc": "2.0"
}

Unsubscribe

Unsubscribe message requests the cancellation of a previous event subscription.
The parameter subscription contains the subscription id received from the
server when the subscription was created.

Request

An unsubscribe request contains the following parameters:

	method (required, string). Value is unsubscribe.

	params (required, object).

	object (required, string). Media element in which the subscription
is placed.

	subscription (required, number). Subscription identifier.

	sessionId (required, string). Session identifier.

The following example shows a request message requesting the cancellation of the
subscription 353be312-b7f1-4768-9117-5c2f5a087429:

	Body (application/json)

{
 "id": 38,
 "method": "unsubscribe",
 "params": {
 "subscription": "052061c1-0d87-4fbd-9cc9-66b57c3e1280",
 "object": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline/76dcb8d7-5655-445b-8cb7-cf5dc91643bc_kurento.PlayerEndpoint",
 "sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
 },
 "jsonrpc": "2.0"
}

Response

The response message only contains the sessionId. The following example shows
the typical response of an unsubscription request:

An unsubscribe response contains the following parameters:

	result (required, object)

	sessionId (required, string). Session identifier.

For example:

	Body (application/json)

{
 "id": 38,
 "result": {
 "sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
 },
 "jsonrpc": "2.0"
}

OnEvent

When a client is subscribed to a type of events in an object, the server sends
an onEvent request each time an event of that type is fired in the object. This
is possible because the Stream Oriented open API is implemented with WebSockets
and there is a full duplex channel between client and server.

Request

An OnEvent request contains the following parameters:

	method (required, string). Value is onEvent.

	params (required, object).

	value (required, object)

	data (required, object)

	source (required, string). Source media element.

	tags (optional, string array). Metadata for the
media element.

	timestamp (required, number). Media server time
and date (in Unix time, i.e., number of seconds since 01/01/1970).

	type (required, string). Same type identifier
described on subscribe message (i.e.: CodeFound,
ConnectionStateChanged, ElementConnected,
ElementDisconnected, EndOfStream, Error,
MediaSessionStarted, MediaSessionTerminated,
MediaStateChanged, ObjectCreated, ObjectDestroyed,
OnIceCandidate, OnIceComponentStateChanged,
OnIceGatheringDone)

	object (required, object).Media element identifier.

	type (required, string). Type identifier (same value than
before)

The following example shows a notification sent for server to client to notify
an event of type EndOfStream in a PlayerEndpoint object:

	Body (application/json)

{
 "jsonrpc": "2.0",
 "method": "onEvent",
 "params": {
 "value": {
 "data": {
 "source": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline/76dcb8d7-5655-445b-8cb7-cf5dc91643bc_kurento.PlayerEndpoint",
 "tags": [],
 "timestamp": "1461589478",
 "type": "EndOfStream"
 },
 "object": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline/76dcb8d7-5655-445b-8cb7-cf5dc91643bc_kurento.PlayerEndpoint",
 "type": "EndOfStream"
 }
 }
}

Notice that this message has no id field due to the fact that no response is
required.

Response

There is no response to the onEvent message.

Glossary

This is a glossary of terms that often appear in discussion about multimedia transmissions. Some of the terms are specific to GStreamer or Kurento, and most of them are described and linked to their RFC, W3C or Wikipedia documents.

	Agnostic media

	One of the big problems of media is that the number of variants of video and audio codecs, formats and variants quickly creates high complexity in heterogeneous applications. So Kurento developed the concept of an automatic converter of media formats that enables development of agnostic elements. Whenever a media element’s source is connected to another media element’s sink, the Kurento framework verifies if media adaption and transcoding is necessary and, if needed, it transparently incorporates the appropriate transformations making possible the chaining of the two elements into the resulting Pipeline.

	AVI

	Audio Video Interleaved, known by its initials AVI, is a multimedia container format introduced by Microsoft in November 1992 as part of its Video for Windows technology. AVI files can contain both audio and video data in a file container that allows synchronous audio-with-video playback. AVI is a derivative of the Resource Interchange File Format (RIFF).

See also

Audio Video Interleave

Resource Interchange File Format

	Bower

	Bower [http://bower.io/] is a package manager for the web. It offers a generic solution to the problem of front-end package management, while exposing the package dependency model via an API that can be consumed by a build stack.

	Builder Pattern

	The builder pattern is an object creation software design pattern whose intention is to find a solution to the telescoping constructor anti-pattern. The telescoping constructor anti-pattern occurs when the increase of object constructor parameter combination leads to an exponential list of constructors. Instead of using numerous constructors, the builder pattern uses another object, a builder, that receives each initialization parameter step by step and then returns the resulting constructed object at once.

See also

Builder pattern

	CORS

	Cross-origin resource sharing is a mechanism that allows JavaScript code on a web page to make XMLHttpRequests to different domains than the one the JavaScript originated from. It works by adding new HTTP headers that allow servers to serve resources to permitted origin domains. Browsers support these headers and enforce the restrictions they establish.

See also

Cross-origin resource sharing

	enable-cors.org [http://enable-cors.org/]

	Information on the relevance of CORS and how and when to enable it.

	DOM

	Document Object Model is a cross-platform and language-independent convention for representing and interacting with objects in HTML, XHTML and XML documents.

	EOS

	End Of Stream is an event that occurs when playback of some media source has finished. In Kurento, some elements will raise an EndOfStream event.

	GStreamer

	GStreamer [http://gstreamer.freedesktop.org/] is a pipeline-based multimedia framework written in the C programming language.

	H.264

	A Video Compression Format. The H.264 standard can be viewed as a “family of standards” composed of a number of profiles. Each specific decoder deals with at least one such profiles, but not necessarily all.

See also

H.264/MPEG-4 AVC

	RFC 6184 [https://tools.ietf.org/html/rfc6184.html]

	RTP Payload Format for H.264 Video
(This RFC obsoletes RFC 3984 [https://tools.ietf.org/html/rfc3984.html])

	HTTP

	The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed, collaborative, hypermedia information systems. HTTP is the foundation of data communication for the World Wide Web.

See also

Hypertext Transfer Protocol

	RFC 2616 [https://tools.ietf.org/html/rfc2616.html]

	Hypertext Transfer Protocol – HTTP/1.1

	ICE

	Interactive Connectivity Establishment (ICE) is a technique used to achieve NAT Traversal. ICE makes use of the STUN protocol and its extension, TURN. ICE can be used by any aplication that makes use of the SDP Offer/Answer model..

See also

Interactive Connectivity Establishment

	RFC 5245 [https://tools.ietf.org/html/rfc5245.html]

	Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols

	IMS

	IP Multimedia Subsystem (IMS) is the 3GPP’s Mobile Architectural Framework for delivering IP Multimedia Services in 3G (and beyond) Mobile Networks.

See also

IP Multimedia Subsystem

3GPP

	RFC 3574 [https://tools.ietf.org/html/rfc3574.html]

	Transition Scenarios for 3GPP Networks

	jQuery

	jQuery [http://jquery.com/] is a cross-platform JavaScript library designed to simplify the client-side scripting of HTML.

	JSON

	JSON [http://json.org/] (JavaScript Object Notation) is a lightweight data-interchange format. It is designed to be easy to understand and write for humans and easy to parse for machines.

	JSON-RPC

	JSON-RPC [http://www.jsonrpc.org/] is a simple remote procedure call protocol encoded in JSON. JSON-RPC allows for notifications and for multiple calls to be sent to the server which may be answered out of order.

	Kurento

	Kurento [http://kurento.org] is a platform for the development of multimedia-enabled applications. Kurento is the Esperanto term for the English word ‘stream’. We chose this name because we believe the Esperanto principles are inspiring for what the multimedia community needs: simplicity, openness and universality. Some components of Kurento are the Kurento Media Server, the Kurento API, the Kurento Protocol, and the Kurento Client.

	Kurento API

	An object oriented API to create media pipelines to control media. It can be seen as and interface to Kurento Media Server. It can be used from the Kurento Protocol or from Kurento Clients.

	Kurento Client

	A programming library (Java or JavaScript) used to control an instance of Kurento Media Server from an application. For example, with this library, any developer can create a web application that uses Kurento Media Server to receive audio and video from the user web browser, process it and send it back again over Internet. The Kurento Client libraries expose the Kurento API to application developers.

	Kurento Protocol

	Communication between KMS and clients by means of JSON-RPC messages. It is based on WebSocket that uses JSON-RPC v2.0 messages for making requests and sending responses.

	KMS	Kurento Media Server

	Kurento Media Server is the core element of Kurento since it responsible for media transmission, processing, loading and recording.

	Maven

	Maven [http://maven.apache.org/] is a build automation tool used primarily for Java projects.

	Media Element

	A Media Element is a module that encapsulates a specific media capability. For example RecorderEndpoint, PlayerEndpoint, etc.

	Media Pipeline

	A Media Pipeline is a chain of media elements, where the output stream generated by one element (source) is fed into one or more other elements input streams (sinks). Hence, the pipeline represents a “machine” capable of performing a sequence of operations over a stream.

	Media Plane

	In a traditional IP Multimedia Subsystem, the handling of media is conceptually splitted in two layers. The layer that handles the media itself -with functionalities such as media transport, encoding/decoding, and processing- is called Media Plane.

See also

IP Multimedia Subsystem

Signaling Plane

	MP4

	MPEG-4 Part 14 or MP4 is a digital multimedia format most commonly used to store video and audio, but can also be used to store other data such as subtitles and still images.

See also

MPEG-4 Part 14

	Multimedia

	Multimedia is concerned with the computer controlled integration of text, graphics, video, animation, audio, and any other media where information can be represented, stored, transmitted and processed digitally.
There is a temporal relationship between many forms of media, for instance audio, video and animations. There 2 are forms of problems involved in

	Sequencing within the media, i.e. playing frames in correct order or time frame.

	Synchronization, i.e. inter-media scheduling. For example, keeping video and audio synchronized or displaying captions or subtitles in the required intervals.

See also

Multimedia

	Multimedia container format

	Container or wrapper formats are meta-file formats whose specification describes how different data elements and metadata coexist in a computer file.
Simpler multimedia container formats can contain different types of audio formats, while more advanced container formats can support multiple audio and video streams, subtitles, chapter-information, and meta-data, along with the synchronization information needed to play back the various streams together.
In most cases, the file header, most of the metadata and the synchro chunks are specified by the container format.

See also

Multimedia container format

	NAT	Network Address Translation

	Network address translation (NAT) is the technique of modifying network address information in Internet Protocol (IP) datagram packet headers while they are in transit across a traffic routing device for the purpose of remapping one IP address space into another.

See also

Network address translation

	NAT-T	NAT Traversal

	NAT traversal (sometimes abbreviated as NAT-T) is a general term for techniques that establish and maintain Internet protocol connections traversing network address translation (NAT) gateways, which break end-to-end connectivity. Intercepting and modifying traffic can only be performed transparently in the absence of secure encryption and authentication.

See also

	NAT Types and NAT Traversal [https://doc-kurento.readthedocs.io/en/stable/knowledge/nat.html]

	Entry in Kurento Knowledge Base.

	NAT Traversal White Paper [http://www.nattraversal.com/]

	White paper on NAT-T and solutions for end-to-end connectivity in its presence

	Node.js

	Node.js [http://www.nodejs.org/] is a cross-platform runtime environment for server-side and networking applications. Node.js applications are written in JavaScript, and can be run within the Node.js runtime on OS X, Microsoft Windows and Linux with no changes.

	npm

	npm [https://www.npmjs.org/] is the official package manager for Node.js.

	OpenCL

	OpenCL [http://www.khronos.org/opencl/] is the standard framework for cross-platform, parallel programming of heterogeneous platforms consisting of central processing units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs), field-programmable gate arrays (FPGAs) and other processors.

	OpenCV

	OpenCV (Open Source Computer Vision Library) is a BSD-licensed open source computer vision and machine learning software library. OpenCV aims to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception.

	Pad, Media

	A Media Pad is is an element’s interface with the outside world. Data streams from the MediaSource pad to another element’s MediaSink pad.

See also

	GStreamer Pad [https://gstreamer.freedesktop.org/documentation/application-development/basics/pads.html]

	Definition of the Pad structure in GStreamer

	PubNub

	PubNub [http://www.pubnub.com/] is a publish/subscribe cloud service for sending and routing data. It streams data to global audiences on any device using persistent socket connections. PubNub has been designed to deliver data with low latencies to end-user devices. These devices can be behind firewalls, NAT environments, and other hard-to-reach network environments. PubNub provides message caching for retransmission of lost signals over unreliable network environments. This is accomplished by maintaining an always open socket connection to every device.

	QR

	QR code (Quick Response Code) is a type of two-dimensional barcode. that became popular in the mobile phone industry due to its fast readability and greater storage capacity compared to standard UPC barcodes.

See also

QR code

	REMB

	Receiver Estimated Maximum Bitrate (REMB) is a type of RTCP feedback message that a RTP receiver can use to inform the sender about what is the estimated reception bandwidth currently available for the stream itself. Upon reception of this message, the RTP sender will be able to adjust its own video bitrate to the conditions of the network. This message is a crucial part of the Google Congestion Control (GCC) algorithm, which provides any RTP session with the ability to adapt in cases of network congestion.

The GCC algorithm is one of several proposed algorithms that have been proposed by an IETF Working Group named RTP Media Congestion Avoidance Techniques (RMCAT).

See also

What is RMCAT congestion control, and how will it affect WebRTC? [https://blog.mozilla.org/webrtc/what-is-rmcat-congestion-control/]

	draft-alvestrand-rmcat-remb [https://tools.ietf.org/html/draft-alvestrand-rmcat-remb-03]

	RTCP message for Receiver Estimated Maximum Bitrate

	draft-ietf-rmcat-gcc [https://tools.ietf.org/html/draft-ietf-rmcat-gcc-02]

	A Google Congestion Control Algorithm for Real-Time Communication

	REST

	Representational state transfer (REST) is an architectural style consisting of a coordinated set of constraints applied to components, connectors, and data elements, within a distributed hypermedia system. The term representational state transfer was introduced and defined in 2000 by Roy Fielding in his doctoral dissertation [http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm].

See also

Representational state transfer

	RTCP

	The RTP Control Protocol (RTCP) is a sister protocol of the RTP, that provides out-of-band statistics and control information for an RTP flow.

See also

RTP Control Protocol

	RFC 3605 [https://tools.ietf.org/html/rfc3605.html]

	Real Time Control Protocol (RTCP) attribute in Session Description Protocol (SDP)

	RTP

	Real-time Transport Protocol (RTP) is a standard packet format designed for transmitting audio and video streams on IP networks. It is used in conjunction with the RTP Control Protocol. Transmissions using the RTP audio/video profile (RTP/AVP) typically use SDP to describe the technical parameters of the media streams.

See also

Real-time Transport Protocol

RTP audio video profile

	RFC 3550 [https://tools.ietf.org/html/rfc3550.html]

	RTP: A Transport Protocol for Real-Time Applications

	Same-origin policy

	The “same-origin policy” is a web application security model. The policy permits scripts running on pages originating from the same domain to access each other’s DOM with no specific restrictions, but prevents access to DOM on different domains.

See also

Same-origin policy

	SDP	Session Description Protocol	SDP Offer/Answer

	The Session Description Protocol (SDP) is a text document that describes the parameters of a streaming media session. It is commonly used to describe the characteristics of RTP streams (and related protocols such as RTSP).

The SDP Offer/Answer model is a negotiation between two peers of a unicast stream, by which the sender and the receiver share the set of media streams and codecs they wish to use, along with the IP addresses and ports they would like to use to receive the media.

This is an example SDP Offer/Answer negotiation. First, there must be a peer that wishes to initiate the negotiation; we’ll call it the offerer. It composes the following SDP Offer and sends it to the other peer -which we’ll call the answerer-:

v=0
o=- 0 0 IN IP4 127.0.0.1
s=Example sender
c=IN IP4 127.0.0.1
t=0 0
m=audio 5006 RTP/AVP 96
a=rtpmap:96 opus/48000/2
a=sendonly
m=video 5004 RTP/AVP 103
a=rtpmap:103 H264/90000
a=sendonly

Upon receiving that Offer, the answerer studies the parameters requested by the offerer, decides if they can be satisfied, and composes an appropriate SDP Answer that is sent back to the offerer:

v=0
o=- 3696336115 3696336115 IN IP4 192.168.56.1
s=Example receiver
c=IN IP4 192.168.56.1
t=0 0
m=audio 0 RTP/AVP 96
a=rtpmap:96 opus/48000/2
a=recvonly
m=video 31278 RTP/AVP 103
a=rtpmap:103 H264/90000
a=recvonly

The SDP Answer is the final step of the SDP Offer/Answer Model. With it, the answerer agrees to some of the parameter requested by the offerer, but not all.

In this example, audio 0 means that the answerer rejects the audio stream that the offerer intended to send; also, it accepts the video stream, and the a=recvonly acknowledges that the answerer will exclusively act as a receiver, and won’t send any stream back to the other peer.

See also

Session Description Protocol

Anatomy of a WebRTC SDP [https://webrtchacks.com/anatomy-webrtc-sdp/]

	RFC 4566 [https://tools.ietf.org/html/rfc4566.html]

	SDP: Session Description Protocol

	RFC 4568 [https://tools.ietf.org/html/rfc4568.html]

	Session Description Protocol (SDP) Security Descriptions for Media Streams

	Semantic Versioning

	Semantic Versioning [http://semver.org/] is a formal convention for specifying compatibility using a three-part version number: major version; minor version; and patch.

	Signaling Plane

	It is the layer of a media system in charge of the information exchanges concerning the establishment and control of the different media circuits and the management of the network, in contrast to the transfer of media, done by the Signaling Plane.
Functions such as media negotiation, QoS parametrization, call establishment, user registration, user presence, etc. as managed in this plane.

See also

Media Plane

	Sink, Media

	A Media Sink is a MediaPad that outputs a Media Stream.
Data streams from a MediaSource pad to another element’s MediaSink pad.

	SIP

	Session Initiation Protocol (SIP) is a signaling plane protocol widely used for controlling multimedia communication sessions such as voice and video calls over Internet Protocol (IP) networks. SIP works in conjunction with several other application layer protocols:

	SDP for media identification and negotiation.

	RTP, SRTP or WebRTC for the transmission of media streams.

	A TLS layer may be used for secure transmission of SIP messages.

See also

Session Initiation Protocol

	Source, Media

	A Media Source is a Media Pad that generates a Media Stream.

	SPA	Single-Page Application

	A single-page application is a web application that fits on a single web page with the goal of providing a more fluid user experience akin to a desktop application.

	Sphinx

	Sphinx [http://www.sphinx-doc.org/en/stable/] is a documentation generation system. Text is first written using reStructuredText [http://docutils.sourceforge.net/rst.html] markup language, which then is transformed by Sphinx into different formats such as PDF or HTML.
This is the documentation tool of choice for the Kurento project.

See also

Easy and beautiful documentation with Sphinx [http://www.ibm.com/developerworks/linux/library/os-sphinx-documentation/index.html?ca=dat]

	Spring Boot

	Spring Boot [http://projects.spring.io/spring-boot/] is Spring’s convention-over-configuration solution for creating stand-alone, production-grade Spring based applications that can you can “just run”.
It embeds Tomcat or Jetty directly and so there is no need to deploy WAR files in order to run web applications.

	SRTCP

	SRTCP provides the same security-related features to RTCP, as the ones provided by SRTP to RTP. Encryption, message authentication and integrity, and replay protection are the features added by SRTCP to RTCP.

See also

SRTP

	SRTP

	Secure RTP is a profile of RTP (Real-time Transport Protocol), intended to provide encryption, message authentication and integrity, and replay protection to the RTP data in both unicast and multicast applications. Similarly to how RTP has a sister RTCP protocol, SRTP also has a sister protocol, called Secure RTCP (or SRTCP).

See also

Secure Real-time Transport Protocol

	RFC 3711 [https://tools.ietf.org/html/rfc3711.html]

	The Secure Real-time Transport Protocol (SRTP)

	SSL

	Secure Socket Layer. See TLS.

	STUN

	STUN stands for Session Traversal Utilities for NAT. It is a standard protocol (IETF RFC 5389 [https://tools.ietf.org/html/rfc5389]) used by NAT traversal algorithms to assist hosts in the discovery of their public network information.
If the routers between peers use full cone, address-restricted, or port-restricted NAT, then a direct link can be discovered with STUN alone. If either one of the routers use symmetric NAT, then a link can be discovered with STUN packets only if the other router does not use symmetric or port-restricted NAT. In this later case, the only alternative left is to discover a relayed path through the use of TURN.

	Trickle ICE

	Extension to the ICE protocol that allows ICE agents to send and receive candidates incrementally rather than exchanging complete lists. With such incremental provisioning, ICE agents can begin connectivity checks while they are still gathering candidates and considerably shorten the time necessary for ICE processing to complete.

See also

	draft-ietf-ice-trickle [https://tools.ietf.org/html/draft-ietf-ice-trickle-15]

	Trickle ICE: Incremental Provisioning of Candidates for the Interactive Connectivity Establishment (ICE) Protocol

	TLS

	Transport Layer Security (TLS) and its predecessor Secure Socket Layer (SSL).

See also

Transport Layer Security

	RFC 5246 [https://tools.ietf.org/html/rfc5246.html]

	The Transport Layer Security (TLS) Protocol Version 1.2

	TURN

	TURN stands for Traversal Using Relays around NAT. Like STUN, it is a network protocol (IETF RFC 5766 [https://tools.ietf.org/html/rfc5766]) used to assist in the discovery of paths between peers on the Internet.
It differs from STUN in that it uses a public intermediary relay to act as a proxy for packets between peers. It is used when no other option is available since it consumes server resources and has an increased latency.
The only time when TURN is necessary is when one of the peers is behind a symmetric NAT and the other peer is behind either a symmetric NAT or a port-restricted NAT.

	VP8

	VP8 is a video compression format created by On2 Technologies as a successor to VP7. Its patents rights are owned by Google, who made an irrevocable patent promise on its patents for implementing it and released a specification under the Creative Commons Attribution 3.0 license [https://creativecommons.org/licenses/by/3.0/].

See also

VP8

	RFC 6386 [https://tools.ietf.org/html/rfc6386.html]

	VP8 Data Format and Decoding Guide

	WebM

	WebM [http://www.webmproject.org/] is an open media file format designed for the web. WebM files consist of video streams compressed with the VP8 video codec and audio streams compressed with the Vorbis audio codec. The WebM file structure is based on the Matroska media container.

	WebRTC

	WebRTC [https://webrtc.org/] is a set of protocols, mechanisms and APIs that provide browsers and mobile applications with Real-Time Communications (RTC) capabilities over peer-to-peer connections.

See also

WebRTC Working Draft [http://www.w3.org/TR/webrtc/]

	WebSocket

	WebSocket [https://www.websocket.org/] specification (developed as part of the HTML5 initiative) defines a full-duplex single socket connection over which messages can be sent between client and server.

 Index

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | J
 | K
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | V
 | W

A

 	
 	Agnostic media

 	
 	AVI

B

 	
 	Bower

 	
 	Builder Pattern

C

 	
 	CORS

D

 	
 	DOM

E

 	
 	EOS

G

 	
 	GStreamer

H

 	
 	H.264

 	
 	HTTP

I

 	
 	ICE

 	
 	IMS

J

 	
 	jQuery

 	
 	JSON

 	JSON-RPC

K

 	
 	KMS

 	Kurento

 	Kurento API

 	
 	Kurento Client

 	Kurento Media Server

 	Kurento Protocol

M

 	
 	Maven

 	
 Media

 	Pad

 	Pipeline

 	Sink

 	Source

 	
 	Media Element

 	Media Pipeline

 	Media Plane

 	MP4

 	Multimedia

 	Multimedia container format

N

 	
 	NAT

 	NAT Traversal

 	NAT-T

 	
 	Network Address Translation

 	Node.js

 	npm

O

 	
 	OpenCL

 	
 	OpenCV

P

 	
 	Pad, Media

 	
 Plane

 	Media

 	Signaling

 	
 	PubNub

Q

 	
 	QR

R

 	
 	REMB

 	REST

 	
 RFC

 	RFC 2616

 	RFC 3550

 	RFC 3574

 	RFC 3605

 	RFC 3711

 	RFC 3984

 	RFC 4566

 	RFC 4568

 	RFC 5245

 	RFC 5246

 	RFC 6184

 	RFC 6386

 	
 	RTCP

 	RTP

S

 	
 	Same-origin policy

 	SDP

 	SDP Offer/Answer

 	Semantic Versioning

 	Session Description Protocol

 	Signaling Plane

 	Single-Page Application

 	Sink, Media

 	
 	SIP

 	Source, Media

 	SPA

 	Sphinx

 	Spring Boot

 	SRTCP

 	SRTP

 	SSL

 	STUN

T

 	
 	TLS

 	
 	Trickle ICE

 	TURN

V

 	
 	VP8

W

 	
 	WebM

 	
 	WebRTC

 	WebSocket

_static/Magicmirror-screenshot.png
e o

Tutorial 2: Magic Mirror

Local stream Remote sream

<]

_static/Media_element.png

_static/Generic_interactions.png
Client
Application
Media
o negotiation
phase
<
Media
e exchange
phase

Content Request

Application
Server

(JSON)

Content Answer

Specific application
logic at the
server-side

Commands requesting
the creation of a pipeline

<

(JSON)

Media
pipeline
creation

_static/Magicmirror-pipeline.png
Kurento Media Server

Media Pipeline

WebRtcndgoint R eoiesh

_static/Recorder_session.png
Client Application
Application Server

(JSON) logic at the
server-side
Media
negotiation .
o h Create pipeline with > Med.'a
phase . pipeline
Recorder and HTTP end points| . aation
4 Do it in this URL 4
(JSON)
POST/PUT to URL
Media Media upload to media server
e exchange
phase (HTTP response)
‘ e

_static/Stream-oriented_GE.png
Client side applications
(Browser, Mobile app...)

£0 ET
ik Iz z ®

] 38 Pl w »

EE =3 H HH H B
i I 2 ENEN el 3
s g a HHEE
= = 1 o3 & »
2=z Media 13 3 HHAEE a
£a Repository D b4 ZHEN S E
8k 2e : 4 3

Input Output
Endpoint Endpoint

Application
oy

OpenAPI

Media Server Application Server

_static/RTC_session.png
Client Application
Application Server
| This is my SDP Specific application
(JSON) logic at the
server-side
Media
negotiation .

o phase Create pipeline with > p':’;:?i:e
appropriate RTC end point | . cation

‘ This is the answer SDP
(JSON)

Media
o exchange Multimedia RTC exchange with media server

phase

_static/RTC_session_pipeline.png
WebRtcEndPoint

Client

Multimedia RTC exchange
with media server

Media
Repository

RecorderEndPoint

_static/ajax-loader.gif

_static/AgnosticMediaAdaptor.png
Media Element

An agnostic media adaptor
is “hidden” behind every
connection making
compatible element
formats transparently

Media Element

_static/Applications_Layered_Architecture.png
Client-side application code

Web Application Architecture = Multimedia Application Architecture

Application Logic l